Datasheet ## **AUO** P750QVN02.1 UP-02-183 The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice. ## Model Name: P750QVN02.1 Issue Date: 2018/04/24 ()Preliminary Specifications (*)Final Specifications | Customer Signature L | Date AUO | Date | |----------------------|-------------------------------|-------------------| | Approved By | Approval By PM Dire | CTWu* | | Note | Reviewed By RD Dire | ecto-
Jack Hen | | | Reviewed By Project Spark Lin | 林俊息 | | | Prepared By PM Bryan Chu | 花卷雪 | ## **Contents** | 1. | Genera | al Description | 5 | |-----|----------|---|----| | 1.1 | I. Disp | lay Characteristics | 5 | | 1.2 | 2. Optio | cal Characteristics | 6 | | 1.3 | 3. Mech | nanical Characteristics | 9 | | | 1.3.1. | Placement Suggestions | 9 | | | 1.3.2. | 2D Drawing | 10 | | 2. | Absolu | te Maximum Ratings | 15 | | 3. | | cal Specification | | | 3.1 | I. Elect | trical Characteristics | 16 | | | 3.1.1. | DC Characteristics (Ta = 25 ± 2 °C) | 16 | | | 3.1.2. | AC Characteristics (Ta = 25 ± 2 °C) | | | | 3.1.3. | Driver Characteristics | 17 | | | 3.1.4. | TCON Characteristics | | | 3.2 | 2. Inter | face Connections | 21 | | | 3.2.1. | V by one color data mapping | 25 | | 3.3 | 3. Sign | al Timing Specification | 26 | | 3.4 | I. Sign | al Timing Waveforms | 27 | | 3.5 | 5. Colo | r Input Data Reference | 29 | | 3.6 | 6. Powe | er Sequence for LCD | 30 | | 3.7 | 7. Back | light Specification | 31 | | | 3.7.1. | Electrical specification (Ta = 25 ± 2 °C) | | | | 3.7.2. | Input Pin Assignment | 32 | | | 3.7.3. | Power Sequence for Backlight | 34 | | | 3.7.4. | LED Operating Life Time | 34 | | 4. | Reliabi | lity Test Items | 35 | | 5. | Interna | tional Standard | 36 | | 5.′ | I. Safe | ty | 36 | | 5.2 | 2. EMC | | 36 | | 6. | Packin | g | 37 | | 6.1 | I. Defir | nition of Label | 37 | | 6.2 | 2. Pack | ing Methods | 38 | | 6.3 | | t and Shipment Information | | | 7. | | tions | | | 7.1 | | nting Precautions | | | 7.2 | 2. Oper | rating Precautions | 40 | | 7.3 | 3. Oper | rating Condition for Public Information Display | 41 | | 7.4 | I. Elect | trostatic Discharge Control | 41 | | 7.5 | 5. Prec | autions for Strong Light Exposure | 42 | | 7.6. | Storage | 42 | |------|--|----| | 7 7 | Handling Precautions for Protection Film | 42 | ## **Record of Revision** | Version | Date | Page | Description | | | | | |------------------|------------|-------|--|--|--|--|--| | 0.0 | 2017/08/14 | | 1 st release | | | | | | | | 9 | Modify weight to 27Kg | | | | | | 0.1 | 2017/08/16 | 21 | Correct Pin 15, 22, 23 to no connection | | | | | | | | 40 | Modify pallet and shipment information | | | | | | | | 5 | Modify outline dimension to 1675.7(H) x 953.7(V) x 38.6(D) | | | | | | 0.2 2017/08/25 9 | | | Modify depth (Dmin) to 38.6 | | | | | | 0.3 | 2018/01/09 | 16 | Modify inrush current to 6A | | | | | | | | 6 | Response Time (G to G) is changed to Typ. 6, Max 10 Color Coordinates | | | | | | | | 9 | Correct Placement | | | | | | 1.0 | 2018/01/12 | 10~14 | Modify 2D drawing | | | | | | | | 24 | Remove "4K2K Input Data Format" | | | | | | | | 32 | Modify input current & power | | | | | | | | 21 | Define local dimming Control (Pin-15): N.C/High for Enable (ON), GND/Low for Disable (OFF) | | | | | | 2.0 | 2018/04/24 | 32 | Modify connecter model to "CI0112M12HRL-NH Cvilux" | | | | | | | | 33 | Add 12 pin assignment | | | | | | | | | | | | | | | | | | antile Om | | | | | | | | | afide Use | | | | | | | | | 10 Co. Leingi 33:38 | | | | | | | | | 0-12-1-1-1-1 | | | | | | | | | 51 0808 · | | | | | | | | . 0 | 1300 | | | | | | | | 0 | 20. | 4 4 | | | | | | | | | That Out | | | | | | | | | eden ise | | | | | | | | | COM 21 CQ | | | | | ## 1. General Description This specification applies to the 74.5 inch Color TFT-LCD Module P750QVN02.1. This LCD module has a TFT active matrix type liquid crystal panel 3840x2160 pixels, and diagonal size of 74.5 inch. This module supports 3840x2160 mode. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 10-bit gray scale signal for each dot. The P750QVN02.1 has been designed to apply the V-by-1 interface method. It is intended to support displays where high brightness, wide viewing angle. #### * General Information #### 1.1. Display Characteristics | Items | Specification | Unit | Note | |------------------------|--------------------------------|--------|------------------------------| | Active Screen Size | 74.5 | inch | | | Display Area | 1650.24 (H) x 928.26 (V) | mm | | | Outline Dimension | 1675.7(H) x 953.7(V) x 38.6(D) | mm | D: front bezel to back bezel | | Driver Element | a-Si TFT active matrix | | | | Bezel Opening | 1654.3 x 932.3 | mm | | | Display Colors | 10 bit (1.07 billion) | Colors | | | Number of Pixels | 3840x2160 | Pixel | | | Pixel Pitch | 0.4298 (H) x 0.4298 (W) | mm | | | Pixel Arrangement | RGB vertical stripe | | M | | Display Operation Mode | Normally Black | 0, | | | Surface Treatment | Anti-glare, 3H | 5 | Haze=44% | | Rotate Function | Unachievable | 28 | Note 1 | | Display Orientation | Portrait/Landscape Enabled | 5 | Note 2 | Note 1: Rotate Function refers to LCD display could be able to rotate. This function does not work in this model. Note 2: Please refer to 1.3.1 Placement Suggestions. #### 1.2. Optical Characteristics Optical characteristics are determined on the back-light of measured unit is 'ON' and stabilized after 45~60 minutes in a dark environment at 25°C. The values are specified at 50cm distance from the LCD surface at a viewing angle of φ and θ equal to 0° . Fig.1 presents additional information concerning the measurement equipment and method. | | | | 08 | Values | | | Notes | |---------|-----------------------|------------------------|---------|--------|-----------|-------------------|-------| | | Parameter | Symbol | Min. | Тур. | Max | Unit | | | Contra | st Ratio | CR | 4000 | 5000 | | | 1 | | Surface | e Luminance (White) | L _{WH} (2D) | 560 | 700 | | cd/m ² | 2 | | Lumina | ance Variation | δ _{WHITE(9P)} | | | 1.33 | | 3 | | Respoi | nse Time (G to G) | Тү | | 6.5 | 10 | ms | 4 | | Color (| Gamut | NTSC | | 90 | .11 | % | | | Color (| Coordinates | | 100 | CO. C | | | | | | Red | R _x | - fide | 0.666 | | | | | | | R _Y | | 0.321 | | | | | | Green | G _X | | 0.281 | | | | | | | G _Y | T 0.00 | 0.676 | T 10.00 | | | | | Blue | B _X | Тур0.03 | 0.151 | Тур.+0.03 | | | | | | B _Y | | 0.054 | | | | | | White | W _X | | 0.280 | | | | | | | W _Y | | 0.290 | | | | | Viewin | g Angle | | | | | | 5 | | | x axis, right(φ=0°) | $\theta_{\rm r}$ | | 89 | | degree | | | | x axis, left(φ=180°) | θι | | 89 | | degree | | | | y axis, up(φ=90°) | θυ | e gen | 89 | | degree | | | | y axis, down (φ=270°) | θ_{d} | | 89 | | degree | | #### Note: 1. Contrast Ratio (CR) is defined mathematically as: Contrast Ratio= $$\frac{\text{Surface Luminance of L}_{\text{on5}}}{\text{Surface Luminance of L}_{\text{off5}}}$$ - Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see FIG 2. LED current I_F = typical value (without driver board), LED input VDDB =24V, I_{DDB}. = Typical value (with driver board), L_{WH}=Lon5 where Lon5 is the luminance with all pixels displaying white at center 5 location. - 3. The variation in surface luminance, δ WHITE is defined (center of Screen) as: $$\delta_{WHITE(9P)}$$ = Maximum($L_{on1}, L_{on2}, ..., L_{on9}$)/ Minimum($L_{on1}, L_{on2}, ..., L_{on9}$) 4. Response time T_{γ} is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on F_{ν} =60Hz to optimize. | Mea | asured | Target | | | | | | |-------|----------|--------------|------------|------------|----------------|-------------|--| | Respo | nse Time | 0% | 25% | 50% | 75% | 100% | | | | 0% | | 0% to 25% | 0% to 50% | 0% to 75% | 0% to 100% | | | | 25% | 25% to 0% | | 25% to 50% | 25% to 75% | 25% to 100% | | | Ctout | 50% | 50% to 0% | 50% to 25% | | 50% to 75% | 50% to 100% | | | Start | 75% | 75% to 0% | 75% to 25% | 75% to 50% | | 75% to 100% | | | | 100% | 4000/ 4- 00/ | 100% to | 100% to | 4000/ 4 - 750/ | | | | | | 100% to 0% | 25% | 50% | 100% to 75% | | | T_{γ} is determined by 10% to 90% brightness difference of rising or falling period. (As illustrated) The response time is defined as the following figure and shall be measured by switching the input signal for "any level of gray(bright)" and "any level of gray(dark)". Any level of gray (Bright) Any level of gray (Dark) Any level of gray (Bright) FIG. 2 Luminance 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG3. FIG.3 Viewing Angle #### 1.3. Mechanical Characteristics The contents provide general mechanical characteristics for the model P750QVN02.1 in addition the figures in the next page are detailed mechanical drawing of the LCD. | Item | | Dimension | Unit | Note | |-------------------|--------------|-----------|------|---------------------------| | | Horizontal | 1675.7 | mm | | | | Vertical | 953.7 | mm | | | Outline Dimension | Depth (Dmin) | 38.6 | mm | front bezel to back bezel | | | Depth (Dmax) | 68.8 | mm | to wall mount | | Weight | 2 | 7.0mmal | КС | w/ DB | #### 1.3.1. Placement Suggestions - Landscape Mode: The default placement is T-Con Side on the lower side and the image is shown upright via viewing from the front. - 2. Portrait Mode: The default placement is that T-Con side has to be placed on the left side via viewing from the front. Landscape (Front view) Portrait (Front view) ## 1.3.2. 2D Drawing ## **Front View** ## **Back View** ## 2. Absolute Maximum Ratings The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit | | 1000 T | | | | _ | |---------------------------|--------|------|-----|--------|------------| | Item | Symbol | Min | Max | Unit | Conditions | | Logic/LCD Drive Voltage | Vcc | -0.3 | 14 | [Volt] | Note 1 | | Input Voltage of Signal | Vin | -0.3 | 3.6 | [Volt] | Note 1 | | Operating Temperature | ТОР | 0 | +50 | [°C] | Note 2 | | Operating Humidity | НОР | 10 | 90 | [%RH] | Note 2 | | Storage Temperature | TST | -20 | +60 | [°C] | Note 2 | | Storage Humidity | HST | 10 | 90 | [%RH] | Note 2 | | Panel Surface Temperature | PST | / Os | 65 | [°C] | Note 3 | Note 1: Duration: 50 msec. Note 2: Maximum Wet-Bulb should be 39 □ and No condensation. The relative humidity must not exceed 90% non-condensing at temperatures of 40 □ or less. At temperatures greater than 40 □, the wet bulb temperature must not exceed 39 □. Note 3: Surface temperature is measured at 50°C dry condition. ## 3. <u>Electrical Specification</u> The P750QVN02.1 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other is to power Back Light Unit. ## 3.1. Electrical Characteristics #### 3.1.1. DC Characteristics (Ta = 25 \pm 2 °C) | | Parameter. | Oli. al | | Value | I I wif | Nata | | |-----------------------|---|--------------------------|--------------|-------|----------------------|---------------------|------| | | Parameter | Symbol | Min. | Тур. | Max | Unit | Note | | LCD | | | | | | | | | Power Su | pply Input Voltage | V _{DD} | 10.8 | 12 | 13.2 | V _{DC} | | | Power Su | pply Input Current | I _{DD} | - | 3 | 3.6 | Α | 1 | | Power Co | nsumption | Pc | 173 | 36 | 43.2 | Watt | 1 | | Inrush Cu | rrent | I _{RUSH} | (| 18- | 6 | Α | 2 | | Permissik
Voltage | ole Ripple of Power Supply Input | V _{RP} | 135 | | V _{DD} * 5% | mV _{pk-pk} | 3 | | CMOS
Interface | Input High Threshold Voltage | V _⊪
(High) | 2.7 | | 3.3 | V _{DC} | 4 | | | Input Low Threshold Voltage | V _{IL}
(Low) | 0 | | 0.6 | V _{DC} | 4 | | | CML Differential Input High Threshold | V _{RTH} | +50 | | | mV _{DC} | | | V-by-one
Interface | CML Differential Input Low Threshold | V _{RTL} | iat | | -50 | mV _{DC} | | | | CML Common mode Bias Voltage | V _{RCT} | 0.8 | 0.9 | 1.0 | mV _{DC} | | | | Threshold CML Common mode Bias Voltage | | | | | | | ## 3.1.2. AC Characteristics ($Ta = 25 \pm 2$ °C) | | Item | Symbol | Min. | Тур. | Max | Unit | Note | |-----------|--|---------------------------|---------------|------|---------------|-----------|------------| | | VRXINP/N input each bit Period | T _{RRIP}
(UI) | 310 | | 379 | ps | 10bit
6 | | | Receiver Clock : Spread Spectrum Modulation range | Fclk_ss | Fclk
-0.5% | 1 | Fclk
+0.5% | MHz | 7 | | | Receiver Clock : Spread Spectrum
Modulation frequency | Fss | | 30 | | KHz | 7 | | | CDR training pattern time | T _{LOCK} | | 500 | | us | 6 | | | Latency from LOCKN 'HIGH' to clock training pattern | L1 | 0 | | | us | 6 | | | Latency from LOCKN 'LOW' to normal 8b10b data | L2 | (|)u | 70 | us | 6 | | | CML Differential Input High Threshold | V_{RTH} | +50 | | | mV_{DC} | | | | CML Differential Input Low Threshold | V_{RTL} | -18 | | -50 | mV_{DC} | | | V-by-one | CML Common mode Bias Voltage | V_{RCT} | 0.8 | 0.9 | 1.0 | mV_{DC} | | | Interface | Intra-pair skew | T _{INTRA} | | | 0.3 | UI | 8 | | | Inter-pair skew | T _{INTER} | | | 5 | UI | 9 | | | 013 180 | A_X | | 0.25 | | UI | | | | For D. 50180 | A_Y | | 0 | - | mV | | | | Y | B_X | | 0.3 | | UI | | | | | B_Y | | 50 | | mV | | | | | C_X | | 0.7 | | UI | | | | | C_Y | | 50 | | mV | | | | | D_X | \ | 0.75 | | UI | 4.0 | | | Eye diagram at receiver | D_Y | - 0 | 0 | | mV | 10 | | | | E_X | 120 | 0.7 | | UI | | | | 100 | E_Y | 32 | -50 | | mV | | | | Co. | F_X | 738 | 0.3 | | UI |] | | | AUO Cont | F_Y | 13:1 | -50 | | mV | | ## 3.1.3. **Driver Characteristics** | Item | Symbol | Min | Max | Unit | condition | |----------------------------|--------|-----|-----|------|-----------| | Driver Surface Temperature | DST | | 100 | [°C] | Note | Note : Any point on the driver surface must be less than 100 $\!\!\!\!\!^{\circ}_{\circ}$ under any conditions. #### 3.1.4. TCON Characteristics | Item | Symbol | Min | Max | Unit | condition | |--------------------------|--------|-----|-----|------|-----------| | TCON Surface Temperature | TST | 0.8 | 85 | [°C] | Note | Note: Any point on the TCON surface must be less than 85℃ under any conditions. Note: 1. Test Condition: (1) $V_{DD} = 12.0V$ (2) Fv = 60Hz (3) Fclk= Max freq. (4) Temperature = 25 °C (5) Typ. Input current: White Pattern Max. Input current: Heavy loading pattern defined by AUO >> refer to "Section: 3.3 Signal Timing Specification, Typical timing" Measurement condition : Rising time = 400us - 3. Test Condition: - (1) The measure point of V_{RP} is in LCM side after connecting the System Board and LCM. - (2) Under Max. Input current spec. condition. - 4. The measure points of VIH and VIL are in LCM side after connecting the System Board and LCM. - 5. The relative humidity must not exceed 80% non-condensing at temperatures of 40° C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C. - 6. V-by-one Receiver start up timing waveform 7. Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures. #### 8. V-by-one Intra-pair Skew #### 9. V-by-one Inter-pair Skew #### 10. Eye diagram at receiver Eye Mask **Example of Eye diagram** Ec Internal Use Only ## 3.2. Interface Connections ● LCD connector: FI-RE51S-HF (JAE, V-by-One 51pin connector) | PIN | Symbol | Description | |-----|--------|--| | 1 | VDD | Power Supply Input Voltage | | 2 | VDD | Power Supply Input Voltage | | 3 | VDD | Power Supply Input Voltage | | 4 | VDD | Power Supply Input Voltage | | 5 | VDD | Power Supply Input Voltage | | 6 | VDD | Power Supply Input Voltage | | 7 | VDD | Power Supply Input Voltage | | 8 | VDD | Power Supply Input Voltage | | 9 | N.C. | No connection (for AUO test only. Do not connect) | | 10 | GND | Ground | | 11 | GND | Ground | | 12 | GND | Ground | | 13 | GND | Ground | | 14 | GND | Ground | | 15 | LD_EN | Local Dimming Control Pin N.C/High for Enable (ON) GND/Low for Disable (OFF) | | 16 | N.C. | No connection (for AUO test only. Do not connect) | | 17 | N.C. | No connection (for AUO test only. Do not connect) | | 18 | N.C. | No connection (for AUO test only. Do not connect) | | 19 | N.C. | No connection (for AUO test only. Do not connect) | | 20 | N.C. | No connection (for AUO test only. Do not connect) | | 21 | N.C. | No connection (for AUO test only. Do not connect) | | 22 | N.C. | No connection (for AUO test only. Do not connect) | | 23 | N.C. | No connection (for AUO test only. Do not connect) | | 24 | GND | Ground | | 25 | HTPDN | Vx1 HTPDN | | 26 | LOCKN | Vx1 LOCKN | | 27 | GND | Ground | | 28 | RX0N | Vx1 lane 0 | | 29 | RX0P | Vx1 lane 0 | | 30 | GND | Ground | [©] Copyright AU Optronics Corp. 2017 All Rights Reserved. | | | | Rev. 2.0 | |----|------|------------|----------| | 31 | RX1N | Vx1 lane 1 | | | 32 | Rx1P | Vx1 lane 1 | | | 33 | GND | Ground | | | 34 | RX2N | Vx1 lane 2 | | | 35 | RX2P | Vx1 lane2 | | | 36 | GND | Ground | | | 37 | RX3N | Vx1 lane 3 | | | 38 | RX3P | Vx1 lane 3 | | | 39 | GND | Ground | | | 40 | RX4N | Vx1 lane 4 | | | 41 | RX4P | Vx1 lane 4 | | | 42 | GND | Ground | | | 43 | RX5N | Vx1 lane 5 | | | 44 | RX5P | Vx1 lane 5 | | | 45 | GND | Ground | | | 46 | RX6N | Vx1 lane 6 | | | 47 | RX6P | Vx1 lane 6 | | | 48 | GND | Ground | | | 49 | RX7N | Vx1 lane 7 | | | 50 | RX7P | Vx1 lane 7 | | | 51 | GND | Ground | | | | l L | | | #### V-by-One Lanes of Pixel Data: | | Lane 0 | Lane 1 | Lane 2 | Lane 3 | Lane 4 | Lane 5 | Lane 6 | Lane 7 | |--------|---------------|------------------|---------------|---------------|---------------|---------------|----------------|----------------| | | FSBS | Blank | FSBP | | FSBE_SR | | Pixel1 | Pixel 2 | Pixel 3 | Pixel 4 | Pixel5 | Pixel 6 | Pixel 7 | Pixel 8 | | | Pixe19 | Pixel 10 | Pixel 11 | Pixel12 | Pixel 13 | Pixel 14 | Pixel 15 | Pixel 16 | | Line 1 | | | | | 101 | | | | | | Pixel
1913 | Pixel
1914 | Pixel
1915 | Pixel
1916 | Pixel
1917 | Pixel
1918 | Pixel
19198 | Plixel
1920 | | | FSBS | Blank | FSBP | | FSBE_SR | | Pixel1 | Pixel 2 | Pixel 3 | Pixel 4 | Pixel5 | Pixel 6 | Pixel 7 | Pixel 8 | | | Pixe18 | Pixel 10 | Pixel 11 | Pixel12 | Pixel 13 | Pixel 14 | Pixel 15 | Pixel 16 | | Line2 | | | | | 9 | | | - | | | Pixel
1913 | Pixel
1914 | Pixel
1915 | Pixel
1916 | Pixel
1917 | Pixel
1918 | Pixel
19198 | Plixel
1920 | | 100 | | | | | | 138 | | | | 0.00 | | 20 4 00 0 | - at | 4.5 | 3 95 | S 55 | S . S | | | FSBS | |---| | FSBE_SR | | Pixel | | 1921 1922 1923 1924 1925 1926 1927 1928 | | Pixel | | Line 1 1929 1930 1931 1932 1933 1934 1935 1936 - | | Pixel | | Pixel | | 3833 3834 3835 3836 3837 3838 3839 3840 FSBS | | FSBS | | FSBP | | FSBE_SR FSBE | | Pixel Pixe | | 1921 1922 1923 1924 1925 1926 1927 1928 | | Pixel | | Line2 1929 1930 1931 1932 1933 1934 1935 1936 | | | | Pixel Pixe | | 3833 3834 3835 3836 3837 3838 3839 3840
- · · · · · · · · · · · · · · · | | Confidential Use O | | Confidential Use O | | Confidential Use O | | | Note: Normal pixel data mapping | Pixel No | | Pixel 1 | | | Pixel 2 | | | Pixel 3 | | | - | F | Pixel 384 | 0 | |-----------|----|----------|----|----|---------|-----|-----|---------|-----|----|----|-------|-----------|-------| | Line 1 | R1 | G1 | B1 | R2 | G2 | B2 | R3 | G3 | В3 | R4 | ~ | R3840 | G3840 | B3840 | | Line 2 | R1 | G1 | B1 | R2 | G2 | B2 | R3 | G3 | В3 | R4 | ~ | R3840 | G3840 | B3840 | | Line 3 | R1 | G1 | B1 | R2 | G2 | B2 | R3 | G3 | В3 | R4 | ~ | R3840 | G3840 | B3840 | | Line 4 | R1 | G1 | B1 | R2 | G2 | B2 | R3 | G3 | В3 | R4 | ~ | R3840 | G3840 | B3840 | | Line 5 | R1 | G1 | B1 | R2 | G2 | B2 | R3 | G3 | В3 | R4 | ~ | R3840 | G3840 | B3840 | | Line 6 | R1 | G1 | B1 | R2 | G2 | B2 | R3 | G3 | В3 | R4 | ~ | R3840 | G3840 | B3840 | | : | : | : | : | : | : | : | : | : | 4:1 | : | 00 | : | : | : | | Line 2158 | R1 | G1 | B1 | R2 | G2 | B2 | R3 | G3 | В3 | R4 | ~ | R3840 | G3840 | B3840 | | Line 2159 | R1 | G1 | B1 | R2 | G2 | B2 | R3 | G3 | В3 | R4 | ~ | R3840 | G3840 | B3840 | | Line 2160 | R1 | G1 | B1 | R2 | G2 | B2 | R3 | G3 | В3 | R4 | ~ | R3840 | G3840 | B3840 | | | | * | FO | P | 51 | EC. | 308 | 80, | 33 | | | | | | ## 3.2.1. V by one color data mapping | Mode | Packer inp | ut & Unpacker output | 30bpp RGB
/YCbCr444(10bit) | 24bpp RGB
/YCbCr444(8bit) | |------------|------------|----------------------|-------------------------------|------------------------------| | | | D[0] | R/Cr[2] | R/Cr[0] | | | | D[1] | R/Cr[3] | R/Cr[1] | | | | D[2] | R/Cr[4] | R/Cr[2] | | | Druto | D[3] | R/Cr[5] | R/Cr[3] | | | Byte0 | D[4] | R/Cr[6] | R/Cr[4] | | | | D[5] | R/Cr[7] | R/Cr[5] | | | | D[6] | R/Cr[8] | R/Cr[6] | | | | D[7] | R/Cr[9] | R/Cr[7] | | | | D[8] | G/Y[2] | G/Y[0] | | | | D[9] | G/Y[3] | G/Y[1] | | ره | | D[10] | G/Y[4] | G/Y[2] | | 3byte mode | Darta 1 | D[11] | G/Y[5] | G/Y[3] | | vte | Byte1 | D[12] | G/Y[6] | G/Y[4] | | 35 | | D[13] | G/Y[7] | G/Y[5] | | Q) | | D[14] | G/Y[8] | G/Y[6] | | mod | | D[15] | G/Y[9] | G/Y[7] | | 4byte mode | | D[16] | B/Cb[2] | B/Cb[0] | | 4 | | D[17] | B/Cb[3] | B/Cb[1] | | | | D[18] | B/Cb[4] | B/Cb[2] | | | Druto | D[19] | B/Cb[5] | B/Cb[3] | | | Byte2 | D[20] | B/Cb[6] | B/Cb[4] | | | | D[21] | B/Cb[7] | B/Cb[5] | | | | D[22] | B/Cb[8] | B/Cb[6] | | | | D[23] | B/Cb[9] | B/Cb[7] | | | | D[24] | | | | | | D[25] | | | | | | D[26] | B/Cb[0] | | | | Druto? | D[27] | B/Cb[1] | Yan | | | Byte3 | D[28] | G/Y[0] | | | | | D[29] | G/Y[1] | | | | | D[30] | R/Cr[0] | | | | | D[31] | R/Cr[1] | | #### 3.3. Signal Timing Specification This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation. ## Timing Table (DE only Mode) | Signal | Item | Symbol | Min. | Тур. | Max | Unit | |----------------------|-----------|-------------|------|-------|-------|------| | | Period | Tv | 2200 | 2250 | 2715 | Th | | Vertical Section | Active | Tdisp (v) | | 2160 | | Th | | | Blanking | Tblk (v) | 40 | 90 | 555 | Th | | | Period | Th | 530 | 550 | 600 | Tclk | | Horizontal Section | Active | Tdisp (h) | C | 480 | | Tclk | | | Blanking | Tblk (h) | 50 | 70 | 120 | Tclk | | Clock | Frequency | Fclk=1/Tclk | 66 | 74.25 | 77 | MHz | | Vertical Frequency | Frequency | Fv | 47 | 60 | 63 | Hz | | Horizontal Frequency | Frequency | Fh | 120 | 135 | 139.2 | KHz | #### V-sync Request t1≧2H t2≧1H t3≥13H t1+t2+t3≥20T Where H means H-total period #### H-sync Request t4≥10T t5≧5T t6≧10T t4+t5+t6≥30T Where T means pixel clock period #### 3.4. Signal Timing Waveforms Two Section Mode (Lane1~8 V-by one data:1, 2, 3, 4, 1921, 1922, 1923, 1924) - Note1. Display position is specific by the rise of DE signal only. Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen. - Note2. Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen - Note3. If a period of DE "High" is less than 3840 DCLK or less than 2160 lines, the rest of the screen displays black. - Note4. The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other. #### 3.5. Color Input Data Reference The brightness of each primary color (red, green and blue) is based on the 8 bit + FRC gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input. #### **COLOR DATA REFERENCE** | | | | | | 3 C | N | | | 7 | 0 | | | | ln | put | Со | lor l | Data | а | | | | | | | | | | | | | |-------|-------------|----|----|----|-----|----|----|----|----|----|---------|---------|---------|----|-----|-----|-------|---------|----|----|----|---|---|----|---|----|----------|---|---|---|---| | | | | | | | RI | ΞD | | | | | | | | | GRI | EEN | | | | | | | | | BL | UE | | | | | | | Color | MS | В | | | | | | | L | SB | MSB LSB | | | | | | MSB LSB | | | | | | SB | | | | | | | | | | | R9 | R8 | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G9 | G8 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | В | В | В | В | В | В | В | В | В | В | | | | | | | | | | | | | | | | | | | | | | 13 | | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(1023) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(1023) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue(1023) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Color | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | RED(000) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RED(001) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | R | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | RED(1022) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RED(1023) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(000) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(001) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | G | | | | | | | | | | | | | | | 7 1 | | | | | | | | | | | | | | | | | | | GREEN(1022) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(1023) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | BLUE(000) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | BLUE(001) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | В | | | | | | | ļ | | | | <u></u> | | <u></u> | | | | | | | | | | | ļ | | | <u> </u> | | | | | | | BLUE(1022) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | BLUE(1023) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | #### 3.6. Power Sequence for LCD | Davamatav | 10 | l lmi4 | | | |-----------|--------|--------|------|------| | Parameter | Min. | Type. | Max. | Unit | | t1 | 0.4 | 0.00 | 30 | ms | | t2 | 40 | 1800 | | ms | | t3 | 640 | | | ms | | t4 | 0*1 | | | ms | | t5 | 0 | | | ms | | t6 | | | *2 | ms | | t7 | 1000*3 | | | ms | #### Note: - (1) t4=0: concern for residual pattern before BLU turn off. - (2) t6 : voltage of VDD must decay smoothly after power-off. (customer system decide this - (3) When the power supply input voltage(VDD) is off, be sure to pull down the valid and the invalid data to 0V. #### 3.7. Backlight Specification ## 3.7.1. Electrical specification (Ta = 25 \pm 2 °C) | | Item | 6,000 | hal | Condition | | Spec | | Unit | Note | |----|------------------------------|-------------------|---------|-----------|------|----------|-------|------|------| | | item | Sym | ibol 80 | Condition | Min | Тур | Max | Unit | Note | | 1 | Input Voltage | VDI | DB | - | 22.8 | 24 | 25.2 | VDC | - | | 2 | Input Current | I _{DE} | ОВ | VDDB=24V | | 10.5 | 11.55 | ADC | 1 | | 3 | Input Power | P _D | DB | VDDB=24V | | 252 | 277.2 | W | 1 | | 4 | Inrush Current | I _{RU} | SH | VDDB=24V | | only | 4 | ADC | 2 | | _ | On Off control voltage | V | ON | VDDB=24V | 2 | - | 5.5 | VDC | - | | 5 | On/Off control voltage | V _{BLON} | OFF | VDDB=24V | 0 | - | 0.8 | VDC | - | | 6 | On/Off control current | I _{BL} | ON | VDDB=24V | 3: | - | 1.5 | mA | - | | 7 | External PWM | V EPWM | MAX | VDDB=24V | 2 | - | 5.5 | VDC | - | | ′ | Control Voltage | V_EPVVIVI | MIN | VDDB=24V | 0 | - | 0.8 | VDC | - | | 8 | External PWM Control Current | I_EP | I_EPWM | | - | - | 2 | mADC | - | | 9 | External PWM Duty ratio | D_EF | PWM | VDDB=24V | 5 | - | 100 | % | 3 | | 10 | External PWM Frequency | F_EF | F_EPWM | | 140 | 180 | 240 | Hz | - | | 11 | DET status signal | DET | НІ | VDDB=24V | Оре | en Colle | ctor | VDC | 4 | | | DET Status Sigilal | DEI | Lo | VDDB-24V | 0 | - | 8.0 | VDC | 4 | | 12 | Input Impedance | Ri | | VDDB=24V | 300 | | | Kohm | - | Note 1 : Dimming ratio= 100% (MAX) (Ta=25±5□, Turn on for 45minutes) Note 2: Measurement condition Rising time = 20ms (VDDB: 10%~90%); Note 3: Less than 5% dimming control is functional well and no backlight shutdown happened Note 4: Normal: 0~0.8V; Abnormal: Open collector #### 3.7.2. Input Pin Assignment LED driver board connector: CI0112M12HRL-NH Cvilux | Pin | Symbol | Description | |-----|-------------|---------------------------------------------------------------------------------------------------------------| | 1 | VDDB | Operating Voltage Supply, +24V DC regulated | | 2 | VDDB | Operating Voltage Supply, +24V DC regulated | | 3 | VDDB | Operating Voltage Supply, +24V DC regulated | | 4 | VDDB | Operating Voltage Supply, +24V DC regulated | | 5 | VDDB | Operating Voltage Supply, +24V DC regulated | | 6 | BLGND | Ground and Current Return | | 7 | BLGND | Ground and Current Return | | 8 | BLGND | Ground and Current Return | | 9 | BLGND | Ground and Current Return | | 10 | BLGND | Ground and Current Return | | 11 | POT DET 018 | BLU status detection: Normal : 0~0.8V ; Abnormal : Open collector (Recommend Pull high R > 10K, VDD = 3.3V) | | 12 | VBLON | BLU On-Off control: High/Open (2~5.5V) : BL On ; Low (0~0.8V/GND) : BL Off | | 13 | NC | NC | | 14 | PDIM(*) | External PWM (5%~100% Duty, open for 100%) | PWM Dimming: include Internal and External PWM Dimming (Note*) IF External PWM function includes 5% dimming ratio. Judge condition as below: - (1) Backlight module must be lighted ON normally. - (2) All protection function must work normally. AUO Confidential Use Only Uniformity and flicker could NOT be guaranteed #### LED driver board connector: CI0112M12HRL-NH Cvilux | Pin | Symbol | Description | | | | |-----|--------|---------------------------------------------|--|--|--| | 1 | VDDB | Operating Voltage Supply, +24V DC regulated | | | | | 2 | VDDB | Operating Voltage Supply, +24V DC regulated | | | | | 3 | VDDB | Operating Voltage Supply, +24V DC regulated | | | | | 4 | VDDB | Operating Voltage Supply, +24V DC regulated | | | | | 5 | VDDB | Operating Voltage Supply, +24V DC regulated | | | | | 6 | BLGND | Ground and Current Return | | | | | 7 | BLGND | Ground and Current Return | | | | | 8 | BLGND | Ground and Current Return | | | | | 9 | BLGND | Ground and Current Return | | | | | 10 | BLGND | Ground and Current Return | | | | | 11 | NC | NC | | | | | 12 | NC | NC | | | | ### 3.7.3. Power Sequence for Backlight ### Dip condition | Danamatan | _ | Heite | | | |-----------|-----|-------|------|------------------| | Parameter | Min | Тур | Max | Units | | T1 | 20 | de | 15e | ms | | T2 | 250 | 0111- | - 0. | ms | | Т3 | 200 | rer | 3:70 | ms | | T4 | 0 | 10-11 | - | ms | | Т5 | 0 | 20-8 | - | ms | | Т6 | Т6 | | 1000 | ms ^{*1} | Note: 1. T6 describes VDDB dip condition and VDDB couldn't lower than 10% VDDB. #### 3.7.4. LED Operating Life Time | Dougnation | Symbol | Value | | | l lmi4 | Note | |-------------------------------------|--------|-------|-------|-----|--------|------| | Parameter | | Min. | Тур. | Max | Unit | Note | | Backlight Operating Life Time(MTTF) | G. | 50000 | 60000 | | Hour | 1 | #### Note: 1. The lifetime (MTTF) is defined as the time which luminance of LED is 50% compared to its original value. [Operating condition: Continuous operating at Ta = $25\pm2\%$, for single LED only] ## 4. Reliability Test Items | | Test Item | Q'ty | Condition | |---|---------------------------------|---------|------------------------------------------------------------------| | 1 | High temperature storage test | 3 | 60□, 500hrs | | 2 | Low temperature storage test | 3 9 | -20□, 500hrs | | 3 | High temperature operation test | 3 | 50□, 500hrs | | ı | Low temperature operation test | 3 | -5□, 500hrs | | 5 | Vibration test (With carton) | 1(PKG) | Random wave (1.04Grms 2~200Hz) Duration: X,Y,Z 20min per axes | | 3 | Drop test (With carton) | 1(PKG) | Height: 25.4 cm Direction: Only bottom flat twice (ASTMD4169-I) | ### 5. International Standard ### **5.1. Safety** - (1) UL 60950-1; Standard for Safety of Information Technology Equipment Including electrical Business Equipment. - (2) IEC 60950-1; Standard for Safety of International Electrotechnical Commission - (3) EN 60950-1; European Committee for Electrotechnical Standardization (CENELEC), EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment. ## **5.2.** EMC - (1) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992 - (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference. - (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information - Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC), 1998 ## 6. Packing ### **6.1.** Definition of Label #### A. Panel Label: #### **Green mark description** - (1) For Pb Free Product, AUO will add (Pb) for identification. - (2) For RoHs compatible products, AUO will add RoHS for identification. Note: The green Mark will be present only when the green documents have been ready by AUO internal green team. (definition of green design follows the AUO green design checklist.) #### **B. Carton Label:** ## **6.2.** Packing Methods ## **6.3.** Pallet and Shipment Information | | | Specification | | | | | |---|-------------------|---------------------------------------------------|--------------------------------|-------------|--------|--| | | Item | Qty. | Dimension | Weight (kg) | Remark | | | 1 | Packing Box | 3 pcs/box | 1870(L)mm*380*(W)mm*1076(H)mm | 92.66 | | | | 2 | Pallet | c 0 1 | 1900(L)mm*1150(W)mm*150(H)mm | 40 | | | | 3 | Boxes per Pallet | 3 Boxes/Pallet (By Air) ; 3 Boxes/Pallet (By Sea) | | | | | | 4 | Panels per Pallet | 9 pcs/pallet(By Air) ; 9 pcs/Pallet (By Sea) | | | | | | 5 | Pallet after | 9pcs(by Air) | 1900(L)mm*1150(W)mm*1226 (H)mm | 317.98 | | | | | packing | | tial only | | | | ### 7. Precautions Please pay attention to the followings when you use this TFT LCD module. #### 7.1. Mounting Precautions - (1) You must mount a module using holes arranged in four corners or four sides. - (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module. - (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force. - (4) You should adopt radiation structure to satisfy the temperature specification. - (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter cause circuit broken by electro-chemical reaction. - (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.) - (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer. - (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading. - (9) Do not open the case because inside circuits do not have sufficient strength. #### 7.2. Operating Precautions - (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage) - (2) Response time depends on the temperature. (In lower temperature, it becomes longer.) - (3) Brightness depends on the temperature. (In lower temperature, it may become lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer. - (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur. - (5) When fixed patterns are displayed for a long time, remnant image is likely to occur. - (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface. (7) The conductive material and signal cables are kept away from LED driver inductor to prevent abnormal display, sound noise and temperature rising. #### 7.3. Operating Condition for Public Information Display The device listed in the product specification is designed and manufactured for PID (Public Information Display) application. To optimize module's lifetime and function, below operating usages are required. - (1) Normal operating condition - A. Operating temperature: 0~50°C - B. Operating humidity: 10~90% - C. Display pattern: dynamic pattern (Real display). Note) Long-term static display would cause image sticking. - (2) Operation usage to protect against image sticking due to long-term static display. - A. Suitable operating time: under 24 hours a day. - (* The moving picture can be allowed for 24 hours a day) - B. Liquid Crystal refresh time is required. Cycling display between 5 minutes' information (static) display and 10 seconds' moving image. - C. Periodically change background and character (image) color. - D. Avoid combination of background and character with large different luminance. - (3) Periodically adopt one of the following actions after long time display. - A. Running the screen saver (motion picture or black pattern) - B. Power off the system for a while - (4) LCD system is required to place in well-ventilated environment. Adapting active cooling system is highly recommended. - (5) Product reliability and functions are only guaranteed when the product is used under right operation usages. If product will be used in extreme conditions, such as high temperature/ humidity, display stationary patterns, or long operation time etc..., it is strongly recommended to contact AUO for filed application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stock market and controlling systems. #### 7.4. Electrostatic Discharge Control Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly. #### 7.5. Precautions for Strong Light Exposure - (1) Strong light exposure causes degradation of polarizer and color filter. - (2) To keep display function well as a digital signage application, especially the component of TFT is very sensitive to sunlight, it is necessary to set up blocking device protecting panel from radiation of ambient environment. #### 7.6. Storage When storing modules as spares for a long time, the following precautions are necessary. - (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5□ and 35□ at normal humidity. - (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped. - (3) Storage condition is guaranteed under packing conditions. - (4) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition. #### 7.7. Handling Precautions for Protection Film - (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc. - (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off. - (3) You can remove the glue easily. When the glue remains on the bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane. 20180808 Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact: Headquarters Germany #### FORTEC Elektronik AG Lechwiesenstr. 9 86899 Landsberg am Lech Phone: +49 8191 91172-0 E-Mail: sales@fortecag.de Internet: www.fortecag.de #### **Fortec Group Members** Austria **FORTEC Elektronik AG** Office Vienna Nuschinggasse 12 1230 Wien Phone: +43 1 8673492-0 E-Mail: office@fortec.at Internet: www.fortec.at Germany Distec GmbH Augsburger Str. 2b 82110 Germering Phone: +49 89 894363-0 E-Mail: info@distec.de Internet: www.distec.de Switzerland ALTRAC AG Bahnhofstraße 3 5436 Würenlos Phone: +41 44 7446111 E-Mail: info@altrac.ch Internet: www.altrac.ch **United Kingdom** Display Technology Ltd. Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN Phone: +44 1480 411600 E-Mail: <u>info@displaytechnology.co.uk</u> Internet: <u>www. displaytechnology.co.uk</u> USA APOLLO DISPLAY TECHNOLOGIES A FORTEC GROUP MEMBER Apollo Display Technologies, Corp. 87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779 Phone: +1 631 5804360 E-Mail: info@apollodisplays.com Internet: www.apollodisplays.com