Datasheet # **LG Display** LB315WRM-SVA1 HD-10-160 The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice. # SPECIFICATION FOR APPROVAL | (|) | Preliminary | specification | |---|-----|--------------------|---------------| | • | • \ | F! | | | ' | . • | , | ı ıııaı | эþ | CCIII | Ca | .1011 | |---|-----|---|---------|----|-------|----|-------| | | | | | | | | | | | | CLIDDLITED | 100: 1 0 111 | |-------------------------|--|------------|--------------| | | | | | | Title 31.5" UHD TFT LCD | | | | | BUYER | General | |-------|---------| | MODEL | | | SUPPLIER | LG Display Co., Ltd. | |----------|----------------------| | *MODEL | LB315WRM | | SUFFIX | SVA1 | ^{*}When you obtain standard approval, please use the above model name without suffix | APPROVED BY | SIGNATURE
DATE | |------------------------------|---------------------| | 1. 201 | <u> </u> | | COULING | | | | _ | | | | | | | | Please return 1 copy for you | r confirmation with | your signature and comments. | APPROVED BY | SIGNATURE
DATE | |----------------------------------|-------------------| | S.H. Lee / G.Manager | | | REVIEWED BY | | | G.J. Han / Manager [C] | | | Y.H. Hwang / Manager [M] | | | S.H. Han / Manager [O] | | | H.S. Kang / Manager [P] | | | PREPARED BY C.Y. Sung / Engineer | | | Product engineering | g dept. | LG Display Co., Ltd Ver. 1.0 Sep. 19. 2019 1 / 32 ## **Contents** | No | ITEM | Page | |-----|--------------------------------------|------| | | Cover | 1 | | | Contents | 2 | | | Record of revisions | 3 | | 1 | General description | 4 | | 2 | Absolute maximum ratings | 5 | | 3 | Electrical specifications | 6 | | 3-1 | Electrical characteristics | 6 | | 3-2 | Interface connections | 9 | | 3-3 | Signal timing specifications | 13 | | 3-4 | Color input data reference | 14 | | 3-5 | Power sequence | 15 | | 3-6 | V _{LCD} Power dip condition | 16 | | 4 | Optical specifications | 17 | | 5 | Mechanical characteristics | 21 | | 6 | Reliability | 24 | | 7 | International standards | 25 | | 7-1 | Safety | 25 | | 7-2 | Environment | 25 | | 8 | Packing | 26 | | 8-1 | Designation of lot mark | 26 | | 8-2 | Packing form | 27 | | 9 | Precautions | 28 | ## **Record of revisions** | Revision No. | Revision
Date | Page | Before | After | Application
Date | |-------------------------------|------------------|-------|--|--|---------------------| | 0.1 | Sep.18.2018 | - | First Draft, Preliminary Specifications | - | - | | 0.2 | Oct.31.2018 | 11 | CN1 image change (PAD TOP) | CN1 image change (PAD BOTTOM) | . A | | | | 14 | Connector pin area, CN ref change re | To Section True described True Tru | | | 0.3 | Dec.27.2018 | 5, 24 | Outline Dimension (D): 21.0mm
Weight: TBD
Total (79.3)Watt ((10.5) Watt @V _{LCD} ,
(68.8)Watt @Is=(80)mA) | Outline Dimension (D): 23.0mm
Weight: 6,000g (TBD)
Total (79.3)Watt ((10.5) Watt @V _{LCD} ,
(71.4)Watt @Is=(85)mA) | | | | onfil | 25 | | | | | | | 26 | Non-increase and the 14 plan. 1 the graph and the plan and an allowing the plan and an increase and the plan and an increase in | | | | Ver. 1.0 Sep. 19. 2019 3 / 32 | | | | | | ## **Record of revisions** | Revision
No. | Revision
Date | Page | Before | After | Application
Date | |-----------------|------------------|------|--
--|---------------------| | | | 10 | Parameter Symbol Walues Hint. Typ. Hax. LED string current Is - (60) (65) LED string voltage Vs (27.7) (28.7) (28.7) (29.7) Power consumption Pise - (68.8) (71.2) LED life time LED_LIT 30,000 - | Parameter Symbol Values Units | , D. | | | | 14 | Backlight connector pin configuration(CN2 ~ CN5) Table 4. Backlight connector pin configuration(CN2 ~ CN5) The LED interface connector is a model 10035VS-H100. Manufactured by Yeorho. The making connector is a 1038-H100 or equivalent. The pin configuration for the connector is shown in the table below. | The LED wire cable connector is a model 12507/KS-H10G1 Manufactured by Yeonho. The mating connector is a 12507/KR-H10G1 mating connector is a 12507/KR-H10G1. The pin configuration for the connector is shown in the table below. The pin configuration for the connector is shown in the table below. The pin configuration for the connector is shown in the table below. The pin configuration for the connector is shown in the table below. The pin configuration for the connector is shown in the table below. The pin configuration for the pin configuration for the pin connection | | | | onfil | 30 | PACKING INFORMATION 6.2-resking form 6 Palma carefty in or pulsery isolate (1) Palma carefty in or pulsery isolate (2) Palma carefty in or pulsery isolate (3) Careft (1) Careft (1) Careft (1) Careft (1) (4) Careft (1) Careft (1) Careft (1) (5) Careft (1) Careft (1) Careft (1) (6) Careft (1) Careft (1) (7) Careft (1) Careft (1) (8) Careft (1) Careft (1) (8) Careft (1) Careft (1) (9) (1 | 0 2.Packing form | | | 0.4 | Jan. 10. 2019 | 6 | Add Color Gamut (CIE.1931) Spec | Color Gamut (CE 1931) 9669 Typ. 110% Supporting (Cover ratio), 9669 Typ. 115% (Area) | | | | | 20 | Add color gamut min spec
Update color coodinate | Rx | - 96 | | | | 27 | | Text | | | Ver. 1.0 | | | 1 100 temperature aperature test 71 + 070 (200) | 5 Number condition Operation Ta+ 40 * 7,0949H Pressure Operating 170 * 1060hps 1600hps 1600h | 4 / 32 | ## **Record of revisions** | Revision
No. | Revision
Date | Page | Before | After | Application
Date | |-----------------|------------------|-------|--|--|---------------------| | 0.5 | Apr. 23. 2019 | 18 | Prover sequence spec 3-3-1.100 three grant Prover faces for sci 20 20 30 30 30 30 30 30 30 30 | Update power sequence spec Power Supply For LCD Vol. 100 and | Apr.23,2019 | | | | 20 | CR soec
MIN: 700 / TYP: 1000 | CR soec
MIN: 910 / TYP: 1300 | Apr.23.2019 | | 0.6 | May.15.2019 | 16 | Add vby1 data mapping | | May.15.2019 | | | | 26 | Update drawings | | May.15.2019 | | 0.7 | Sep.5.2019 | 25,26 | | | Sep.5.2019 | | 1.0 | Sep.19.2019 | 20 | 1) Color gamut : min 95% , typ 100%)) 2) Color coordinates Red Ry Green Gx Gy Blue Bx By (0.660.TBD) (0.327.TBD) (0.292.TBD) (0.664.TBD) (0.647.TBD) (0.664.TBD) | 1) Min 95% Red Ry 0.660 Green Gx 0.227 Green Gy Typ. Blue Bx 0.060 By 0.060 | Sep.19.2019 | | | | 25,26 | | | Sep.19.2019 | | | | | Update safty, Environment spec 7. International standards | 7-1. Safety a) BC 6286-1. The Innervatived States inclined ConnectedSCS. | | | Ver. 1.0 | | 28 | A Linkel Section Section of Landscape Landscap | Aubjula, Johnston of Comunistra Techniquis Gazareri - Lidel - Selfe Aspareria. [8] ELEA É. Altramo Comitte Commission State (ESEC) (4) ELEA É. Altramo Comitte Commission State (ESEC) (4) ELEA É. Altramo Comitte Commission State (ESEC) (4) ELEA É. LIDEL É. Altramo Commission State (ESEC) (4) ELEA É. Altramo State (ESEC) (5) ELEA É. LIDEL É. Combit Techniquis Gazareria (ESEC) (6) ELEA É. E. Altramo de Commission State (ESEC) (6) ELEA É. E. Altramo de Commission State (ESEC) (7) ELEA É. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8)
EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) EleA É. E. Altramo de Commission State (ESEC) (8) ELEA É. E. Altramo de Commission State (ESEC) (8) ELEA É. E. Altramo de Commission State (ESEC) (8) ELEA É. E. Altramo de Commission State (ESEC) (8) ELEA É. E. Altramo de Commission State (ESEC) (8) ELEA É. E. Altramo de Commission State (ESEC) (8) ELEA É. E. Altramo de Commission State (ESEC) (8) ELEA É. EL E. Altramo de Commission State (ESEC) (8) d | 5 / 32 | #### 1. General description LB315WRM-SVA1 is a color active matrix liquid crystal display with a light emitting diode (WLED) backlight assembly without LED driver. The matrix employs a-Si thin film transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 31.5 inch diagonally measured active display area with UHD resolution.(3840 horizontal by 2160 vertical pixels array) Each pixel is divided into red, green and blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 10-bit gray scale signal for each dot, thus, presenting a palette of more than 1.07Billion colors. It has been designed to apply 10-bit 8 Lane V by one interface. It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important. ## **General features** [FIG. 1] Block diagram | Active screen size | 31.5 inches(80.0051cm) (Aspect ratio 16:9) | |------------------------|---| | Outline dimension | 730.7 (H) x 425.2 (V) x 23.0 (D) mm (Typ.) | | Pixel pitch | 0.18159(H)mm x 0.18159(V)mm | | Pixel format | 3840(H) x 2160(V) Pixels. RGB stripes arrangement | | Color depth | 1.07Billion colors | | Color Gamut (CIE.1931) | sRGB Typ.100% Supporting (Cover ratio) , sRGB Typ. 115% (Area) | | Luminance (@White) | 1000 cd/m² (Center 1 Point, Typ.) | | Viewing angle(CR>10) | View angle free (R/L 178(Typ.), U/D 178(Typ.)) | | Power consumption | Total (81.9)Watt ((10.5) Watt @V _{LCD} , (71.4)Watt @Is=(85)mA) | | Weight | 6000g (Typ.) | | Display operating mode | Transmissive mode, normally black | | Panel type | Reverse type | | Surface treatment | Anti-glare treatment of the front polarizer (Haze 25%, 3H) | #### 2. Absolute maximum ratings The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit. **Table 1. Absolute maximum ratings** | Parameter | Symbol | Values | | Units | Notes | | |-------------------------------------|----------------------|--------|------|-----------------|----------------|--| | rai ailietei | Symbol | Min. | Max. | Oilles | Notes | | | Power supply input voltage | V _{LCD} | -0.3 | 12 | V _{DC} | At 25 ℃ | | | Operating temperature | T _{OP} | 0 | 50 | °C | | | | Storage temperature | T _{ST} | -20 | 60 | °C | 1 2 2 | | | Operating ambient humidity | H _{OP} | 10 | 90 | %RH | 1,2,3 | | | Storage humidity | H _{ST} | 10 | 90 | %RH | | | | LCM surface temperature (Operation) | T _{Surface} | 0 | 65 | °C | 1, 4 | | #### Notes: - 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max., and no condensation of water. - 2. Maximum storage humidity is up to 40°C, 70% RH only for 4 corner light leakage mura. - 3. Storage condition is guaranteed under packing condition - 4. LCM surface temperature should be measured under the condition of $V_{LCD}=10.0V$, fv=60Hz, $T_a=25\,^{\circ}C$, no humidity and typical LED string current. - ※. T_a= Ambient temperature #### [FIG. 2] Temperature and relative humidity ## 3. Electrical specifications #### 3-1. Electrical characteristics It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other input power for the LED/Backlight, is typically generated by a LED Driver. The LED Driver is an external unit to the LCDs. Table 2-1. Electrical characteristics | Davamatav | Creshal | Values | | | lluite. | Notes | |-------------------------------|-----------------------|--------|------|------|---------|-------| | Parameter | Symbol | Min | Тур | Max | Units | Notes | | MODULE: | | | | | | | | Power supply input voltage | V_{LCD} | 9.5 | 10.0 | 10.5 | V | 4 | | Permissive power input ripple | V_{ripple} | | | 400 | mVp-p | 1 | | Dower supply input surrent | I _{LCD} Typ. | - | 1.05 | 1.31 | Α | | | Power supply input current | I _{LCD} Max. | - | 1.5 | 1.87 | Α | 2 | | Dower consumption | Рс Тур. | - | 10.5 | 13.1 | Watt | 2 | | Power consumption | Pc Max. | - | 15 | 18.7 | Watt | | | Rush current | Irush | - | | 3.0 | Α | 3 | #### Notes: - 1. Permissive power ripple should be measured under the condition of $V_{LCD}=10.0V$, $25^{\circ}C$,*fv=max. Refer to page 7 for the pattern and more information. - 2. The specified current and power consumption can be measured under the V_{LCD} =10.0V, 25°C, f_V =60Hz and the pattern should be changed according to the typical or maximum power condition. The max. current can be measured only with the maximum power pattern. See the page 7 for details. - 3. Maximum condition of inrush current : The duration of rush current is about 5ms and rising time of power input is 500us \pm 20%. (min.). - 4. V_{LCD} level must be measured between two points on PCB of LCM [V_{LCD} (test point) ~ LCM Ground) (Test condition : maximum power pattern, 25°C, f_V =60Hz) - * fv=frame frequency • Permissive power input ripple (V_{LCD} = 10.0V, 25°C, fv (frame frequency)=Max. condition) #### White pattern For the exact ripple measurement, the condition of max. 20Mhz is recommended in the bandwidth configuration of oscilloscope. • Power consumption ($V_{LCD} = 10V$, 25°C, fv (frame frequency=60Hz condition) Typical power pattern Maximum power pattern [FIG. 3] Mosaic pattern & White pattern for power consumption measurement Table 2-2. Electrical characteristics of LED bar in normal operating condition | Davameter | Cymphal | | Unite | Notes | | | |--------------------|---------|--------|-------|-------|-------|---------| | Parameter | Symbol | Min. | Тур. | Max. | Units | Notes | | LED string current | Is | - | 85 | 90 | mA | 1, 2 | | LED string voltage | Vs | 27.0 | 28.0 | 29.0 | V | 1, 3 | | Power consumption | PBar | - | 71.4 | 74.0 | Watt | 1, 2, 5 | | LED life time | LED_LT | 30,000 | - | - | Hour | 4 | Notes: The LED bar consists of 150 LED packages, 15 strings parallel x 5 packages serial x 2bar 1. The specified values are for single LED bar. 5.0nfidential Dister - 2. The specified current is defined as the input current for single LED string with 100% duty cycle. - 3. The specified voltage is the input LED string voltage at typical current 100% duty cycle. - 4. The LED life time is defined as the time when brightness of LED itself reach to the 50% of initial value under the conditions at $Ta = 25 \pm 2^{\circ}C$ and typical LED string current. - 5. The power consumption shown above does not include the loss of external LED driver. The typical power consumption is calculated as $P_{Bar} = V_s(Typ.) \times I_s(Typ.) \times No.$ of strings. The maximum power consumption is calculated as $P_{Bar} = V_s(Max.) \times I_s(Typ.) \times No.$ of strings. Ver. 1.0 Sep. 19. 2019 10 / 32 #### 3-2. Interface connections #### **3-2-1. LCD Module** - LCD Connector(CN1): GT05S-51S-H38(LS) or Equivalent Table 3-1. Module connector (CN1) pin configuration | No | Symbol | Description | No | Symbol | Description | |----|--------|------------------------------------|----|--------|-------------------------| | 1 | VLCD | Power Supply +10.0V | 27 | GND | Ground | | 2 | VLCD | Power Supply +10.0V | 28 | RX0N | V-by-One HS Data Lane 0 | | 3 | VLCD | Power Supply +10.0V | 29 | RX0P | V-by-One HS Data Lane 0 | | 4 | VLCD | Power Supply +10.0V | 30 | GND | Ground | | 5 | VLCD | Power Supply +10.0V | 31 | RX1N | V-by-One HS Data Lane 1 | | 6 | VLCD | Power Supply +10.0V | 32 | RX1P | V-by-One HS Data Lane 1 | | 7 | VLCD | Power Supply +10.0V | 33 | GND | Ground | | 8 | VLCD | Power Supply +10.0V | 34 | RX2N | V-by-One HS Data Lane 2 | | 9 | NC | No Connection | 35 | RX2P | V-by-One HS Data Lane 2 | | 10 | GND | Ground | 36 | GND | Ground | | 11 | GND | Ground | 37 | RX3N | V-by-One HS Data Lane 3 | | 12 | GND | Ground | 38 | RX3P | V-by-One HS Data Lane 3 | | 13 | GND | Ground | 39 | GND | Ground | | 14 | GND | Ground | 40 | RX4N | V-by-One HS Data Lane 4 | | 15 | NC | No Connection | 41 | RX4P | V-by-One HS Data Lane 4 | | 16 | NC | No Connection | 42 | GND | Ground | | 17 | NC | No Connection | 43 | RX5N | V-by-One HS Data Lane 5 | | 18 | NC | No Connection | 44 | RX5P | V-by-One HS Data Lane 5 | | 19 | NC | No Connection | 45 | GND | Ground | | 20 | NC | No Connection | 46 | RX6N | V-by-One HS Data Lane 6 | | 21 | NC | No Connection | 47 | RX6P | V-by-One HS Data Lane 6 | | 22 | NC | No Connection | 48 | GND | Ground | | 23 | NC | No Connection | 49 | RX7N | V-by-One HS Data Lane 7 | | 24 | NC | No Connection | 50 | RX7P | V-by-One HS Data Lane 7 | | 25 | HTPDN | Hot plug detect output, Open drain | 51 | GND | Ground | | 26 | LOCKN | Lock detect output, Open drain | - | - | - | #### Notes: - 1. All GND(ground) pins should be connected together to the LCD module's metal frame. - 2. All VLCD (input power) pins should be connected together. [CN1] - Part/No.: GT05S-51S-H38(LS) or Equivalent - Mating
connector : FI-RE51HL(Manufactured by JAE) #### [FIG. 4] Connector diagram ## 3-2-2. V by One input signal Characteristics 1. V by One input signal timing diagram **Table 3-2. Eye Mask Specification** | Symbol | X[UI] | Y[mV] | Note | |--------|------------|-----------|------------------| | Α | 0.25 (max) | 0 | - | | В | 0.5 | 50 (min) | V_{RTH} | | C | 0.75 (min) | 0 | - | | D | 0.5 | -50 (min) | V _{RTL} | #### Notes 1. All Input levels of V by One signals are based on the V by One HS Standard Ver. 1.4 2. The eye diagram is measured by the oscilloscope and receiver CDR characteristic must be emulated. PLL Type : Second OrderPLL bandwidth : 15MHzDamping Factor : 1 ## 2. V by One input signal characteristics | Description | Symbol | Min | Max | Unit | notes | |---|-------------|-----|-----|------|-------| | Allowable inter-pair skew between lanes | tRISK_INTER | - | 5 | UI | 1,2 | #### Notes - 1. 1UI = 1/serial data rate - 2. It is the time difference of the differential voltage between any two lanes in one sub block. Ver. 1.0 Sep. 19. 2019 13 / 32 #### 2. V by One input signal characteristics - * thb = thfp + twh +thbp - * tvb = tvfp + twv +tvbp #### 3-2-3. Backlight connector pin configuration #### Table 4. Backlight connector pin configuration(CN2 ~ CN5) The LED wire cable connector is a model 12507HS-H10G1 Manufactured by Yeonho. The mating connector is a 12507WR-H10G. The pin configuration for the connector is shown in the table below. | Pin | Symbol | ymbol Pin-description (CN3, CN4) | | |-----|--------|----------------------------------|-----------------------| | #1 | FB1 | Channel1 Current Feedback | | | #2 | FB2 | Channel2 Current Feedback | | | #3 | FB3 | Channel3 Current Feedback | | | #4 | FB4 | Channel4 Current Feedback | Left-down | | #5 | V LED | LED power supply (FB1~FB4) | side(CN4)
& | | #6 | V LED | LED power supply (FB5~FB8) | Right-up
Side(CN3) | | #7 | FB5 | Channel5 Current Feedback | in front view | | #8 | FB6 | Channel6 Current Feedback | | | #9 | FB7 | Channel7 Current Feedback | | | #10 | FB8 | Channel8 Current Feedback | 1 | | Pin | Symbol | Pin-description (CN2, CN5) | Remark | |-----|--------|----------------------------|----------------------| | #1 | FB1 | Channel1 Current Feedback | | | #2 | FB2 | Channel2 Current Feedback | | | #3 | FB3 | Channel3 Current Feedback | | | #4 | NC | NC | Right-down | | #5 | V LED | LED power supply (FB1~FB3) | side(CN5)
& | | #6 | V LED | LED power supply (FB4~FB7) | Left-up
Side(CN2) | | #7 | FB4 | Channel4 Current Feedback | in front view | | #8 | FB5 | Channel5 Current Feedback | | | #9 | FB6 | Channel6 Current Feedback | | | #10 | FB7 | Channel7 Current Feedback | | [FIG. 5] Backlight connector view ## 3-3. Signal timing specifications This is signal timing requirement from the signal transmitter. All of the interface signal timing should satisfy the following specifications for its proper operation. Table 5. Timing table | ITE | М | Symbol | Min | Тур | Max | Unit | Note | |------------|-------------------|--------|------|------|------|-------|--------| | | Display
Period | tHV | 480 | 480 | 480 | tCLK | 3840/8 | | Horizontal | Blank | tHB | 60 | 70 | 120 | tCLK | 1 | | | Total | tHP | 540 | 550 | 600 | tCLK | | | | Display
Period | tVV | 2160 | 2160 | 2160 | Lines | | | Vertical | Blank | tVB | 40 | 90 | 600 | Lines | 1 | | | Total | tVP | 2200 | 2250 | 2760 | Lines | | | ITE | M | Symbol | Min | Тур | Max | Unit | Note | |-----------|------------|--------|-------|-------|-------|------|-------| | | DCLK | fCLK | 67 | 74.25 | 78.00 | MHz | 594/8 | | Frequency | Horizontal | fH | 121.8 | 135 | 140 | KHz | 2 | | | Vertical | fV | 50 | 60 | 63 | Hz | 2 | #### Notes - 1. The input of HSYNC & VSYNC signal does not have an effect on normal operation (DE Only Mode). If you use spread spectrum of EMI, add some additional clock to minimum value for clock margin. - 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency - 3. Spread Spectrum Rate (SSR) is limited to ±0.5% center spread at 30KHz - * Timing should be set based on clock frequency. ## 3-4. Color input data reference The brightness of each primary color(red,green,blue) is based on the 10-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input. Table 6. Color data reference | Pack | er input & Unpacker output | 30bpp RGB (10bit) | 24bpp RGB (8bit) | |---------|----------------------------|-------------------|------------------| | | D[0] | R[2] | R[0] | | | D[1] | R[3] | R[1] | | Byte0 | D[2] | R[4] | R[2] | | | D[3] | R[5] | R[3] | | Бусео | D[4] | R[6] | R[4] | | | D[5] | R[7] | R[5] | | | D[6] | R[8] | R[6] | | | D[7] | R[9] | R[7] | | | D[8] | G[2] | G[0] | | | D[9] | G[3] | G[1] | | | D[10] | G[4] | G[2] | | Byte1 | D[11] | G[5] | G[3] | | bytei | D[12] | G[6] | G[4] | | | D[13] | G[7] | G[5] | | | D[14] | G[8] | G[6] | | | D[15] | G[9] | G[7] | | | D[16] | B[2] | B[0] | | | D[17] | B[3] | B[1] | | | D[18] | B[4] | B[2] | | Byte2 | D[19] | B[5] | B[3] | | Dytez | D[20] | B[6] | B[4] | | | D[21] | B[7] | B[5] | | | D[22] | B[8] | B[6] | | | D[23] | B[9] | B[7] | | | D[24] | Don't care | | | | D[25] | Don't care | | | | D[26] | B[0] | | | Ditto 2 | D[27] | B[1] | | | Byte3 | D[28] | G[0] | | | | D[29] | G[1] | | | | D[30] | R[0] | | | | D[31] | R[1] | | Notes 1. 30bpp RGB (10bit) is 4 byte mode, otherwise (24bpp RGB) 3byte mode #### 3-5. Power sequence | Dovementor | | l lait | Nete | | | |------------|------|--------|------|------|---| | Parameter | Min | Тур | Unit | Note | | | T1 | 0.5 | - | 20 | ms | 1 | | T2 | 5 | - | - | ms | 2 | | T3 | 400 | - | - | ms | 3 | | T4 | 100 | - | - | ms | 3 | | T5 | 1000 | - | - | ms | 4 | | T6 | 0 | - | - | ms | 5 | | T 7 | 0 | - | - | ms | | Note: - 1. Even though T1 is over the specified value, there is no problem if I2T spec of fuse is satisfied. - 2. If T2 is satisfied with specification after removing V by one Cable, there is no problem. - 3. The T3 / T4 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown. There is no reliability problem. - 4. T5 should be measured after the Module has been fully discharged between power off and on period. - 5. It is recommendation specification that T6 has to be 0ms as a minimum value. - * Please avoid floating state of interface signal at invalid period. - * When the power supply for LCD (VLCD) is off, be sure to pull down the valid and invalid data to 0V. ## 3-6. V_{LCD} Power dip condition [FIG. 6] Power dip condition For proper operation, stable power supply of V_{LCD} is necessary and power dip is allowed only in below condition. Except this condition, power on/off should follow power sequence specification in previous page exactly. 1) Dip condition $$8.0V \le V_{LCD} < 9.5V$$, $t_d \le 20ms$ Ver. 1.0 Sep. 19. 2019 19 / 32 #### 4. Optical specifications Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at $25\pm2^{\circ}$ C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 ° and aperture 1 degree. FIG. 7 presents additional information concerning the measurement equipment and method. [FIG. 7] Optical characteristic measurement equipment and method **Table 8. Optical characteristics** (Ta=25°C, V_{LCD} =10.0V, f_V =60Hz Dclk=74.25MHz, I_S =85mA) | Down | Complete Com | | Values | I I I I I I I I I I I I I I I I I I I | Natas | | | |--------------------------------|--|----------------------|---------------|---------------------------------------|----------------|-------------------|---| | Param | Symbol | Min. | Тур. | Max. | Units |
Notes | | | Contrast Ratio | | CR | 910 | 1300 | - | | 1 | | Surface luminance, v | white | L _{wH} | 800 | 1000 | - | cd/m ² | 2 | | Luminance variation | | δ _{WHITE} | 75 | - | - | % | 3 | | Response time | Gray To Gray | T _{GTG_AVR} | - | 14 | 25 | ms | 4 | | Color gamut (CIE193 | 31) | sRGB | 95 | | - | % | | | | Red | Rx | Тур.
-0.03 | 0.660 | Typ .
+0.03 | | | | | Reu | Ry | | 0.327 | | | | | | Green | Gx | | 0.295 | | | | | Color coordinates
[CIE1931] | | Gy | | 0.645 | | | | | (By PR650) | Blue | Вх | | 0.150 | | | | | | Diue | Ву | | 0.060 | | | | | | White | Wx | | 0.313 | | | | | | vviille | Wy | | 0.329 | | | | | Color temperature | | - | - | 6500 | - | К | | | Viewing angle | Horizontal | θ_{H} | 170 | 178 | - | Dograe | 5 | | (CR>10, General) | Vertical | θ_{V} | 170 | 178 | - | Degree | 5 | | Gray Scale | - | | 2.2 | | | 6 | | Notes: 1. Contrast Ratio(CR) is defined mathematically as : (By PR880) $$Contrast Ratio = \frac{Surface luminance with all white pixels}{Surface luminance with all black pixels}$$ It is measured at center point(Location P1) - 2. Surface luminance(LwH)is luminance value at Center 1 point(P1) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG.7 (By PR880) - 3. The variation in surface luminance , δ WHITE is defined as : (By PR880) $$\delta_{\textit{WHITE}} = \frac{M \, \text{inimum}(L_{\text{P1}}, L_{\text{P2}}, \dots, L_{\text{P9}})}{M \, \text{aximum} \, (L_{\text{P1}}, L_{\text{P2}}, \dots, L_{\text{P9}})} \times 100$$ Where L1 to L9 are the luminance with all pixels displaying white at 9 locations. For more information see FIG.8 [FIG.8] Measure point for luminance - 4. The Gray To Gray response time is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray". - Gray step: 5 Step - TGTG_AVR is the total average time at rising time and falling time for "Gray To Gray ". - By RD80S **Table 9. GTG Gray table** | Curve To Co | Rising time | | | | | | | | | |--------------|--------------|--|--|------|------|----|--|--|--| | Gray 10 G | Gray To Gray | | | G511 | G255 | G0 | | | | | Falling time | G1023 | | | | | | | | | | | G767 | | | | | | | | | | | G511 | | | | 1 | | | | | | | G255 | | | | | | | | | | | G0 | | | | | | | | | Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)". [FIG. 9] Response Time 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG.10 (By PR880) [FIG. 10] Viewing angle 6. Gamma Value is approximately 2.2. For more information see Table 11. **Table 10. Gray Scale Specification** | Relative Luminance [%] (Typ.) | |-------------------------------| | 0.11 | | 1.08 | | 4.72 | | 11.49 | | 21.66 | | 35.45 | | 53.00 | | 74.48 | | 100 | | | #### 5. Mechanical characteristics The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD. | | Horizontal | 730.7 mm | | | | |---------------------|--|-----------|--|--|--| | Outline dimension | Vertical | 425.2 mm | | | | | | Depth | 23.0 mm | | | | | Bezel area | Horizontal | 702.3mm | | | | | Dezei died | Vertical | 397.2mm | | | | | Activo dicalay area | Horizontal | 697.31 mm | | | | | Active display area | Vertical | 392.23 mm | | | | | Weight | Typ.: 6,000g, Max.: 6,300g | | | | | | Surface treatment | Hard coating(3H) Anti-glare treatment of the front polarizer | | | | | Notes: Please refer to a mechanic drawing in terms of tolerance at the next page. -onfidentia Outline dimensions (horizontal, vertical and outside depth) are measured by using vernier calipers. The inside depth dimensions are measured by using height gauge, when LCM is put face down onto a flat surface. Ver. 1.0 Sep. 19. 2019 24 / 32 <FRONT VIEW> <REAR VIEW> #### * Reverse Panel SECTION E-E SCALE 2/1 ## 6. Reliability **Environment test condition** | No | Test Item | Condition | Notes | |----|---|---|-------| | 1 | High temperature storage test | T _a = 60℃, 240h | 1 | | 2 | Low temperature storage test | T _a = -20℃, 240h | 1 | | 3 | High temperature operation test | T _a = 50℃, 50%RH, 240h | 1 | | 4 | Low temperature operation test | T _a = 0℃, 240h | 1 | | 5 | Humidity condition operation | T _a = 40 °C ,90%RH | 1 | | 6 | Vibration test
(non-operating) | Wave form: Random Vibration level: 1.0G RMS Bandwidth: 10-300Hz Duration: X,Y,Z, 10min One time each direction | | | 7 | Shock test
(non-operating) | Shock level : 100G RMS Waveform : Half sine wave, 2ms Direction : \pm X, \pm Y, \pm Z One time each direction | | | 8 | Altitude Operating Storage / Shipment | 0 - 10,000 feet (3,048m)
0 - 40,000 feet (12,192m) | | | 9 | Maximum storage humidity for 4 corner light leakage Mura. | Max 70%RH , $T_a = 40^{\circ}C$ | | Note 1) Result Evaluation Criteria: TFT-LCD panels test should take place after cooling enough at room temperature. In the standard condition, there should be no particular problems that may affect the display function. ^{*} T_a= Ambient Temperature #### 7. International Standards #### 7-1. Safety - a) IEC 62368-1, The International Electro-technical Commission(IEC). Audio/video, Information and Communication Technology Equipment Safety Safety Requirements. - b) EN 62368-1, European Committee for Electro-technical Standardization (CENELEC) Audio/video, Information and Communication Technology Equipment Safety Requirements - c) UL 62368-1, UL LLC. Audio/video, Information and Communication Technology Equipment Safety Requirements - d) CAN/CSA C22.2 No.62368-1, Canadian Standards Association (CSA). Audio/video, Information and Communication Technology Equipment Safety Requirements - e) IEC 60950-1, The International Electro technical Commission (IEC). Information Technology Equipment Safety Part 1 : General Requirements #### 7-2. Environment onfidentiali a) RoHS, Commission Delegated Directive (EU) 2015/863 of 31 March 2015 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council Ver. 1.0 Sep. 19. 2019 28 / 32 ## 8. Packing ## 8-1. Designation of lot mark a) Lot mark | Α | В | С | D | Е | F | G | Н | I | J | K | L | М | | |---|---|---|---|---|---|---|---|---|---|---|---|---|--| |---|---|---|---|---|---|---|---|---|---|---|---|---|--| A,B,C : SIZE(INCH) D : YEAR E: MONTH $F \sim M$: SERIAL NO. Note 1. YEAR | Year | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |------|------|------|------|------|------|------|------|------|------|------| | Mark | Α | В | С | D | Е | F | G | Н | 3 | K | #### 2. MONTH | Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Mark | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | #### b) Location of lot mark Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice. ## 8-2. Packing form a) Package quantity in one packing: 10ea/Box Package quantity in one Pallet: 20ea/Pallet b) Packing Size: 814mm X 543mm X 509mm C) Pallet Ass'y Size: 1140mmX870mmX682mn * LCM Direction(insert to Bottom Packing): COF Down 1. | No. | Description | Material | |------------|----------------|------------| | (a) | LCM | - | | b | Protect film | PP+PE | | © | AL-Bag | AL | | (d) | Packing,Top | EPS | | Θ | Packing,Bottom | EPS | | (f) | Cushion | EPE | | 9 | Pallet | Plywood | | h | BAND | PP | | (i) | Angle Packing | Paper(SW) | | ① | LABEL | YUPO PAPER | | k | Wrap | - | #### 9. Precautions Please pay attention to the followings when you use this TFT LCD module. ## 9-1. Mounting precautions - (1) You must mount a module using holes arranged in rear side. - (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module. - (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force. - (4) You should adopt radiation structure to satisfy the temperature specification. - (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction. - (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.) - (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer. - (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading. - (9) Do not open the case because inside circuits do not have sufficient strength. ## 9-2. Operating precautions - (1) Response time depends on the
temperature.(In lower temperature, it becomes longer.) - (2) Brightness depends on the temperature. (In higher temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer. - (3) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur. - (4) When fixed patterns are displayed for a long time, remnant image is likely to occur. - (5) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference. - (6) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly. - (7) A screw which is fastened up the steels should be a machine screw. (If not, it causes metallic foreign material and deal LCM a fatal blow) - (8) Please do not set LCD on its edge. - (9) When LCMs are used for public display, defects such as Yogore & image sticking can not be guaranteed. - (10) LCM cannot support "Interlaced scan method" - (11) When this reverse model is used as a forward-type model (PCB on top side), LGD can not guarantee any defects of LCM. - (12) Please conduct image sticking test after 2-hour aging with Rolling pattern and normal temperature. (25~40 $^{\circ}$ C) ## 9-3. Electrostatic discharge control Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly. #### 9-4. Precautions for strong light and hazardous materials exposure Strong light exposure causes degradation of polarizer and color filter. The LCM should be avoided direct contact with Hazardous materials such as sulfur, acetic acid, chlorine, etc. These materials may cause chemical reaction such as sulfurization, corrosion, discoloration, etc. #### 9-5. Storage When storing modules as spares for a long time, the following precautions are necessary. - (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity. - (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped. #### 9-6. Handling precautions for protection film - (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc. - (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off. - (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane. Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact: Headquarters #### Germany #### FORTEC Elektronik AG Augsburger Str. 2b 82110 Germering Phone: +49 89 894450-0 E-Mail: info@fortecag.de Internet: www.fortecag.de #### **Fortec Group Members** #### Austria #### Distec GmbH Office Vienna Nuschinggasse 12 1230 Wien Phone: +43 1 8673492-0 E-Mail: info@distec.de Internet: www.distec.de #### Germany #### Distec GmbH Augsburger Str. 2b 82110 Germering Phone: +49 89 894363-0 E-Mail: info@distec.de www.distec.de #### Switzerland #### ALTRAC AG Bahnhofstraße 3 5436 Würenlos Phone: +41 44 7446111 E-Mail: info@altrac.ch Internet: www.altrac.ch #### **United Kingdom** #### Display Technology Ltd. Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN Phone: +44 1480 411600 E-Mail: info@displaytechnology.co.uk Internet: www.displaytechnology.co.uk #### USA #### Apollo Display Technologies, Corp. 87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779 Phone: +1 631 5804360 E-Mail: info@apollodisplays.com Internet: www.apollodisplays.com