

Datasheet

AUO

P430QVN01.0

UP-02-250

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

Model Name: P430QVN01.0

Issue Date: 2021/07/27

()Preliminary Specifications

(*)Final Specifications

Customer Sigr	nature	Date	AUO	Date
Approved By	For D	2022	Approval By PM Director CT Wu	TWux
Note	AUO D	isplay Pi ISTEC I	Reviewed By Project Leade	y Chen er (S) Eg
		isplay P	Prepared By PM Phoebe Chen	wehe Chen.

	Contents ral Description	
1. Gener	ral Description	5
1.1. Disp	olay Characteristics	5
-	ical Characteristics	
1.3. Med	chanical Characteristics	
1.3.1.	Placement Suggestions	9
	ute Maximum Ratings	
	ical Specification	
3.1. Elec	ctrical Characteristics	
3.1.1.		
3.1.2.		
3.1.3.		
3.1.4.		
	rface Connections	
3.3. Sigr	nal Timing Specification	22
3.4. Cold	or Input Data Reference	24
	ver Sequence for LCD	
3.6 Backlig	ght Specification	
3.6.1	Electrical specification (Ta = 25 ± 2 °C)	
3.6.2	Input Pin Assignment	
3.6.3	Power Sequence for Backlight	
3.6.4	LED Operating Life Time	
Reliability	Test Items	30
4 Interna	ational Standard	31
	ety	
	C	
5 Packir	ng	32
	inition of Label	
5.2 Pac	king Methods	33
	et and Shipment Information	
	utions	
6.1 Mou	unting Precautions	35
	erating Precautions	
	erating Condition for Public Information Display	
6.4 Elec	ctrostatic Discharge Control	36
	cautions for Strong Light Exposure	
6.6 Stor	rage	36
6.7 Har	ndling Precautions for Protection Film	37

Record of Revision

Version	Date	Page	Description				
0.0	2016/12/29		1 st release				
1.0	2017/1/18	22	dd page22 : Data mapping				
2.0	2017/1/25	29	Height: 20 cm → 25.4cm Bottom / 2 nd time → Front->Back->Left->Right->Bottom / 2 nd time				
2.1	2017/02/06	8	Modify "Depth (Dmax)" 25.2 → 26.9mm				
	2017/02/06	8	Modify "Weight" 9000 → 9500G				
2.2	2017/02/09	5	Modify "Contrast Ratio" Typ. : 3000 → 4000, min : 2400 → 3200				
2.3	2017/02/15	4	Modify "Outline Dimension " 963.7(H) x 552.0(V) x 25.2(D) → 963.7(H) x 552.0(V) x 26.9(D)				
2.4	2017/10/31	4	Bezel Opening 954.8(H) x 543.1(V) → 945.9(H) x 534.2(V)				
		9	Modify 2D drawing				
		10	Modify 2D drawing				
		11	Modify 2D drawing				
		29	Shock test 50G ,20ms ±X,Y,Z axis → 50G ,10ms ±X,Y,Z axis				
2.5	2018/10/24	8	Correct "Depth (Dmin)" 17.4→15.2mm				
		24	Modify Power Sequence				
		25	Remove "TBD"				
		9	Modify 2D drawing				
		10	Modify 2D drawing				
		11	Modify 2D drawing				
		14	Modify "AC Characteristics"				
2.6	2018/11/6	25	Modify "Inrush Current" and "External PWM Frequency"				
		10	Modify 2D drawing				
		11	Modify 2D drawing				
2.7	2019/01/31	35	Update "Operating Condition for Public Information Display"				
2.8	2019/04/16	11	Correct Note2 "A17~A18 M4 USER HOLE"				
		31,32	Update "Packing Methods"				
2.9	2019/5/21	28	Modify LED lifetime 50000 to 70000 Hour				
3.0	2020/02/14	33	Pallet size				
			Before				
			7				
3.1	2021/06/03	26	After 7				

			Del	ete						
		26	11 ←	DET status si	ignal∍	DET- Lo	Collect	I	en Collector • 0.8 • 0.8 •	VDC 2
			Bef	ore	Inte	er A.S	6:30			
		27	A 51 -	11.	2941	DET.	Normal: 0		ormal : Open o	
			Afte	11 ₽		NC₽	NC.	6/-		
3.2	2021/07/15	29		note 2.	reference	e index, it	is not rep	oresenta	tive of war	ranty.
		Vn,		EC 60950-1; Sta EN 60950-1;				notecunica	(L'Commission	€
		31	Afte (1) L (2) II (3) E	EUROPEAN ST Business Equip	andio/video, ments.√ udio/video, ments.√ udio/video, ments.√	r Safety of Inf	and commu	chnology E nication te	chnology equ echnology eq	uding Electri ipment – Pa uipment – P
		31	Afte (1) L (2) II (3) E (3) E	EUROPEAN ST. Business Equip r JL 62368-1; Au Safety requirer EC 62368-1; Au Safety requirer EN 62368-1; Au	andio/video, ments.√ udio/video, ments.√ udio/video, ments.√	r Safety of Inf	and commu	chnology E nication te	chnology equ	uding Electri ipment – Pa uipment – P
		31	(1) L (2) II (3) E (3) E (4) Pa (5) Pa	EUROPEAN STA Business Equip r UL 62368-1; Au Safety requirer EC 62368-1; Au Safety requirer EN 62368-1; Au Safety requirer EN 62368-1; Au Safety requirer Dre EXEMPTE Palleter Illet after packing e	andio/video, ments.√ udio/video, ments.√ udio/video, ments.√	information information information 2 boxe 20 pc:	and commu	chnology E nication te	chnology equ	uding Electri ipment – Pa uipment – P
		31	Afte (1) L (2) (3) E (3) E (4) Pa (5) Pa Afte	EUROPEAN STA Business Equip I JL 62368-1; Au Safety requirer EC 62368-1; Au Safety requirer EN 62368-1; Au Safety requirer DICE Xes per Pallete Illet after packing Iteme	ANDARD forment. udio/video, ments. udio/video, ments. udio/video, ments. udio/video,	r Safety of Information information information 2 boxe 20 pc: 1150(L)*1100 Specifi	and communication Telescommunication Communication Communi	chnology E	chnology equipment inclination chnology experiment inclination chnol	ipment – Pa uipment – Pa uipment – Pa
		AU ⁽	Afte (1) L (2) III (3) E (3) E (3) E (4) Pa (5) Pa Afte	EUROPEAN STA Business Equip I JL 62368-1; Au Safety requirer EC 62368-1; Au Safety requirer EN 62368-1; Au Safety requirer EN 62368-1; Au Safety requirer Unit after packing or Pallet or Items or Pallet or Items or Item	ANDARD fo ment.√ udio/video, ments.√ udio/video, ments.√ udio/video,	2 boxes 20 pc: 1150(L)*1100 Specifi Dimer 1060(L)*560 1150(L)*1100 2 boxes	and communication and communication communic	nication te	echnology equipment Incl echnology equipment I	ipment – Pa uipment – Pa uipment – Pa
		AU ⁽	Afte (1) L (2) III (3) E (3) E (3) E (4) Pa (5) Pa Afte 10 Pa (2) Pa (4) Pa (4) Pa (4) Pa (4) Pa	EUROPEAN STA Business Equip r UL 62368-1; Au Safety requirer EC 62368-1; Au Safety requirer EN 62368-1; Au Safety requirer EN 62368-1; Au Safety requirer UCE ILLE ILL	ANDARD forment.	2 boxes 20 pcs 1150(L)*1100(by.	and communication Teals and communication and co	chnology Enication te	chnology equipment Included in	ipment – Pa

1. General Description

This specification applies to the 43 inch Color TFT-LCD Module P430QVN01.0. This LCD module has a TFT active matrix type liquid crystal panel 3840x2160 pixels, and diagonal size of 42.5 inch. This module supports 3840x2160 mode. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with 10-bits gray scale signal for each dot.

The P430QVN01.0 has been designed to apply the 2 channel V-By-1 interface method. It is intended to support displays where high brightness, wide viewing angle.

* General Information

Display Characteristics

Items	Specification	Unit	Note
Active Screen Size	42.5	inch	
Display Area	941.184 (H) x 529.416 (V)	mm	
Outline Dimension	963.7(H) x 552.0(V) x 26.9(D)	mm	D: front bezel to DB cover
Driver Element	a-Si TFT active matrix		
Bezel Opening	945.9(H) x 534.2(V)	mm	
Display Colors	10 bit	Colors	
Number of Pixels	3,840x2,160	Pixel	
Pixel Pitch	0.2451 (H) x 0.2451 (W)	mm	
Pixel Arrangement	RGB vertical stripe	4:121	
Display Operation Mode	Normally Black		A.
Surface Treatment	Anti-Glare, 3H	Olu	Haze=44%
Rotate Function	Unachievable	50	Note 1
Display Orientation	Portrait/Landscape Enabled	26	Note 2

Note 1: Rotate Function refers to LCD display could be able to rotate. This function does not work in this model.

Note 2: Please refer to 5.1 Placement Suggestions.

1.2. Optical Characteristics

Optical characteristics are determined on the back-light of measured unit is 'ON' and stabilized after 45~60 minutes in a dark environment at 25°C. The values are specified at 50cm distance from the LCD surface at a viewing angle of φ and θ equal to 0°.

Fig.1 presents additional information concerning the measurement equipment and method.

	Porometer		ren	Values		11	Natas
	Parameter	Symbol	Min. Typ.		Max	Unit	Notes
Contra	Contrast Ratio		3200	4000			1
Surfac	e Luminance (White)	L _{WH} (2D)	400	500		cd/m²	2
Lumina	ance Variation	б wніте(9Р)			1.33		3
Respo	nse Time (G to G)	Тү		8	10	ms	4
Color (Gamut	NTSC		72		%	
Color (Coordinates			adelli	.14		
	Red	R _X	60	0.650			
		R _Y	1115	0.336	-		
	Green	G _X	203	0.310	-		
		G _Y	T	0.611	T 0.00		
	Blue	Bx	Typ0.03	0.150	Typ.+0.03		
	NO.	B _Y	OA	0.067	-		
	White	Wx		0.28	-		
		W _Y		0.29	-		
Viewin	g Angle						5
	x axis, right(φ=0°)	$\theta_{\rm r}$		89		degree	
	x axis, left(φ=180°)	θι		89	- N	degree	
	y axis, up(φ=90°)	θ_{u}	0	89		degree	
	y axis, down (φ=270°)	θ _d	1115-	89		degree	

Note:

1. Contrast Ratio (CR) is defined mathematically as:

Surface Luminance of Lon5

Contrast Ratio = Surface Luminance of Loff5

- 2. Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see FIG 2. LED current I_F = typical value (without driver board), LED input VDDB =24V, I_{DDB}. = Typical value (with driver board), L_{WH}=Lon5 where Lon5 is the luminance with all pixels displaying white at center 5 location.
- 3. The variation in surface luminance, δ WHITE is defined (center of Screen) as:

 $\delta_{WHITE(9P)}$ = Maximum(L_{on1}, L_{on2},...,L_{on9})/ Minimum(L_{on1}, L_{on2},...L_{on9})

4. Response time T_{γ} is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on F_{ν} =60Hz to optimize.

Mea	asured		4.15	Target		
Respo	nse Time	0%	25%	50%	75%	100%
	0%		0% to 25%	0% to 50%	0% to 75%	0% to 100%
	25%	25% to 0%		25% to 50%	25% to 75%	25% to 100%
Ctowt	50%	50% to 0%	50% to 25%		50% to 75%	50% to 100%
Start	75%	75% to 0%	75% to 25%	75% to 50%		75% to 100%
	100%	100% to 0%	100% to	100% to	100% to 75%	

 T_{Y} is determined by 10% to 90% brightness difference of rising or falling period. (As illustrated)

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of gray(bright) " and "any level of gray(dark)".

FIG. 2 Luminance

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG3.

FIG.3 Viewing Angle

1.3. Mechanical Characteristics

The contents provide general mechanical characteristics for the model P430QVN01.0 In addition the figures in the next page are detailed mechanical drawing of the LCD.

Ite	em Sispla	Dimension	Unit	Note
	Horizontal	963.7	mm	
	Vertical	552.0	mm	
Outline Dimension	Depth (Dmin)	15.2	mm	front bezel to back bezel
	Depth (Dmax) 26.9		mm	to DB cover
Weight	9500		G	w/ DB

1.3.1. Placement Suggestions

- 1. Landscape Mode: The default placement is T-Con Side on the lower side and the image is shown upright via viewing from the front.
- 2. Portrait Mode: The default placement is that T-Con side has to be placed on the left side via viewing from the front.

Landscape (Front view)

Portrait (Front view)

Front View

Back View 1

Back View 2

2. Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vcc	-0.3	14	[Volt]	Note 1
Input Voltage of Signal	Vin	-0.3	4	[Volt]	Note 1
Operating Temperature	ТОР	0	+50	[°C]	Note 2
Operating Humidity	НОР	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST	Silve O	70	[°C]	Note 3

Note 1: Duration:50 msec.

Note 2 : Maximum Wet-Bulb should be 39℃ and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40 $^{\circ}\mathrm{C}$ or less. At temperatures greater than 40°C, the wet bulb temperature must not exceed 39°C.

Note 3: Surface temperature is measured at 50°C Dry condition

3. Electrical Specification

The P430QVN01.0 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other is to power Back Light Unit.

3.1. Electrical Characteristics

3.1.1. DC Characteristics (Ta = 25 ± 2 °C)

	Par Ola VI	Complete		Value		I les it	Note
	Parameter	Symbol	Min.	Тур.	Max	Unit	Note
LCD	<u> </u>						
Power Sup	oply Input Voltage	V_{DD}	10.8	12	13.2	V _{DC}	
Power Sup	pply Input Current	I _{DD}	īel	0.85	1.9	А	1
Power Cor	nsumption	Pc	£10	10.2	22.8	Watt	1
Inrush Cur	rent	I _{RUSH}	<u> 75</u> 6		5	А	2
Permissible	e Ripple of Power Supply Input Voltage	V_{RP}	7.		V _{DD} * 5%	mV_{pk-pk}	3
CMOS	Input High Threshold Voltage	V _{lH} (High)	2.7		3.3	V _{DC}	4
Interface	Input Low Threshold Voltage	V _{IL} (Low)	0		0.6	V _{DC}	4
	CML Differential Input High Threshold	VRTH	+50			mVDC	
V-by-one Interface	CML Differential Input Low Threshold	VRTL			-50	mVDC	
	CML Common mode Bias Voltage	VRCT	0.8	0.9	1.0	mVDC	
	CML Common mode Bias Voltage						

3.1.2. AC Characteristics (Ta = 25 ± 2 °C)

	Devementes	Ci yaa bad		Value		Unit	Note
	Parameter	Symbol	Min.	Тур.	Max	Unit	Note
	VDVIND/N input cosh hit Davied	T _{RRIP}	413		505	ps	8bit 5
	VRXINP/N input each bit Period	(UI)	310		379	ps	10bit 5
	Receiver Clock : Spread Spectrum Modulation range	Fclk_ss	Fclk -0.5%		Fclk +0.5%	MHz	8
	Receiver Clock : Spread Spectrum Modulation frequency	Fss			30	KHz	0
	ALN Training	Traln	4ent	40960		UI	10bit 5
	PDX active to hot plug enable	T _{RHPD0}			1.0	us	5
V-by-one	Intra-pair skew	TINTRA	10		0.3	UI	6
Interface	Inter-pair skew	TINTER	72		5	UI	7
	Eye diagram at receiver	A_X	26	0.25		UI	
	:00	A_Y	6	0		mV	
	Dist	B_X		0.3		UI	
	10 -TE	B_Y		50		mV	
	DIS. 100	C_X		0.7		UI	
	Eye diagram at receiver	C_Y		50		mV	8
	Lye diagram at receiver	D_X		0.75		UI	
		D_Y		0		mV	
		E_X		0.7		UI	
		E_Y	K	-50		mV	
		F_X	Ye,	0.3		UI]
		F_Y	(-50		mV	

3.1.3. Driver Characteristics

3.1.3. <u>Driver Characteristic</u>	cs Displai	Plus	al Use 4:56:3	-50	mv
Item	Symbol	Min	Max	Unit	condition
Driver Surface Temperature	DST	73.0	100	[°C]	Note

Note: Any point on the driver surface must be less than 100℃ under any conditions.

3.1.4. TCON Characteristics

Item	Symbol	Min	Max	Unit	condition
TCON Surface Temperature	TST	6/0	85	[°C]	Note

Note: Any point on the TCON surface must be less than 85℃ under any conditions.

Note:

- 1. Test Condition:
 - (1) $V_{DD} = 12.0V$
 - (2) Fv = 60Hz
 - (3) Fclk= Max freq.
 - (4) Temperature = 25 °C
 - (5) Typ. Input current : White Pattern

Max. Input current: Heavy loading pattern defined by AUO

>> refer to "Section:3.3 Signal Timing Specification, Typical timing"

2. Measurement condition: Rising time = 400us

- 3. Test Condition:
 - (1) The measure point of V_{RP} is in LCM side after connecting the System Board and LCM.
 - (2) Under Max. Input current spec. condition.
- 4. The measure points of VIH and VIL are in LCM side after connecting the System Board and LCM
- 5. V-by-one Receiver start up timing waveform

6. V-by-one Intra-pair Skew

7. V-by-one Inter-pair Skew

8. Eye diagram at receiver

Eye Mask

Example of Eye diagram

9. The relative humidity must not exceed 80% non-condensing at temperatures of 40°C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C.

3.2. Interface Connections

PIN	: JAE FI-RTE51SZ Symbol	Description
1	VIN	36 12V
2	VIN	12V
3	VIN	12V
4	VIN	12V
5	VIN	12V
6	VIN	12V
7	VIN	12V
8	VIN	12V
9	N.C.	No connection
10	GND	Ground
11	GND	Ground
12	GND	Ground
13	GND	Ground
14	GND	Ground
15	N.C.	No connection
16	N.C.	No connection
17	N.C.	No connection
18	N.C.	No connection
19	N.C.	No connection
20	N.C.	No connection
21	N.C.	No connection
22	N.C.	No connection
23	N.C.	No connection
24	GND	Ground
25	HTPDN	Vx1 HTPDN
26	LOCKN	Vx1 LOCK
27	GND	Ground
28	RX0N	Vx1 lane 0
29	RX0P	Vx1 lane 0
30	GND	Ground
31	RX1N	Vx1 lane 1
32	Rx1P	Vx1 lane 1
33	GND	Ground

RX2P Vx1 lane2 35 36 **GND** Ground 37 RX3N Vx1 lane 3 RX3P 38 Vx1 lane 3 **GND** Ground 39 40 RX4N Vx1 lane 4 41 RX4P Vx1 lane 4 42 **GND** Ground RX5N Vx1 lane 5 43 44 RX5P Vx1 lane 5 45 **GND** Ground 46 RX6N Vx1 lane 6 RX6P 47 Vx1 lane 6 48 **GND** Ground 49 RX7N Vx1 lane 7 RX7P 50 Vx1 lane 7 Ground 51 **GND**

V by one color data mapping

Packer input & Unpacker output		ı ac	парріпу		6.0
Byte0 D[0] R/Cr[2] D[1] R/Cr[3] D[2] R/Cr[4] D[3] R/Cr[5] D[4] R/Cr[6] D[5] R/Cr[7] D[6] R/Cr[8] D[7] R/Cr[8] D[7] R/Cr[9] D[8] G/Y[2] D[9] G/Y[3] D[10] G/Y[4] D[11] G/Y[5] D[12] G/Y[6] D[13] G/Y[7] D[14] G/Y[8] D[15] G/Y[9] D[16] B/Cb[2] D[17] B/Cb[3] D[18] B/Cb[4] D[19] B/Cb[5] D[20] B/Cb[6] D[21] B/Cb[7]			Packer inpu	t & Unpacker	30bpp RGB
Byte0 Byte0 Byte0 Byte0 Byte0 Byte1 Byte2 Byte2 Byte2 Byte2 Byte2 Byte2 Byte3 Byte4 Byte4 Byte4 Byte4 Byte5 Byte5 Byte6 Byte6 Byte6 Byte6 Byte6 Byte7 Byte6 Byte6 Byte7 Byte7 Byte7 Byte7 Byte7 Byte7 Byte8 Byte9 Byte1 Byte9 By)	Мо			
Byte0 By	4				
Byte0 Byte0 Byte0 Byte0 D[2] R/Cr[4] D[3] R/Cr[5] D[4] R/Cr[6] D[5] R/Cr[7] D[6] R/Cr[8] D[7] R/Cr[9] D[8] G/Y[2] D[9] G/Y[3] D[10] G/Y[4] D[11] G/Y[5] D[12] G/Y[6] D[13] G/Y[7] D[14] G/Y[8] D[15] G/Y[9] D[16] B/Cb[2] D[17] B/Cb[3] D[18] B/Cb[4] D[19] B/Cb[5] D[20] B/Cb[6] D[21] B/Cb[7]			oi	1	V 18 **
Byte0 Byte0 D[3] R/Cr[5] D[4] R/Cr[6] D[5] R/Cr[7] D[6] R/Cr[8] D[7] R/Cr[9] D[8] G/Y[2] D[9] G/Y[3] D[10] G/Y[4] D[11] G/Y[5] D[12] G/Y[6] D[13] G/Y[7] D[14] G/Y[8] D[15] G/Y[9] D[16] B/Cb[2] D[17] B/Cb[3] D[18] B/Cb[4] D[19] B/Cb[5] D[20] B/Cb[6] D[21] B/Cb[7]			,,0	D[1]	
Byte0 D[4] R/Cr[6] D[5] R/Cr[7] D[6] R/Cr[8] D[7] R/Cr[9] D[8] G/Y[2] D[9] G/Y[3] D[10] G/Y[4] D[10] G/Y[4] D[11] G/Y[5] D[12] G/Y[6] D[13] G/Y[7] D[14] G/Y[8] D[15] G/Y[9] D[16] B/Cb[2] D[17] B/Cb[3] D[18] B/Cb[4] D[19] B/Cb[6] D[21] B/Cb[7]			A O	D[2]	R/Cr[4]
Byte1 D[4] R/Cr[6] D[5] R/Cr[7] D[6] R/Cr[8] D[7] R/Cr[9] D[8] G/Y[2] D[9] G/Y[3] D[10] G/Y[4] D[11] G/Y[5] D[12] G/Y[6] D[13] G/Y[7] D[14] G/Y[8] D[15] G/Y[9] D[16] B/Cb[2] D[17] B/Cb[3] D[18] B/Cb[4] D[19] B/Cb[6] D[20] B/Cb[6] D[21] B/Cb[7]			Byte0	D[3]	R/Cr[5]
Byte 2 D[6] R/Cr[8] D[7] R/Cr[9] D[8] G/Y[2] D[9] G/Y[3] D[10] G/Y[4] D[10] G/Y[4] D[11] G/Y[5] D[12] G/Y[6] D[13] G/Y[7] D[14] G/Y[8] D[15] G/Y[9] D[16] B/Cb[2] D[17] B/Cb[3] D[18] B/Cb[4] D[19] B/Cb[6] D[20] B/Cb[6]			Dy to o	D[4]	R/Cr[6]
Byte 1 D[7] R/Cr[9] D[8] G/Y[2] D[9] G/Y[3] D[10] G/Y[4] D[10] G/Y[4] D[11] G/Y[5] D[12] G/Y[6] D[13] G/Y[7] D[14] G/Y[8] D[15] G/Y[9] D[16] B/Cb[2] D[17] B/Cb[3] D[19] B/Cb[6] D[20] B/Cb[6] D[21] B/Cb[7]				D[5]	R/Cr[7]
Byte1 D[8] G/Y[2] D[9] G/Y[3] D[10] G/Y[4] D[11] G/Y[5] D[12] G/Y[6] D[13] G/Y[7] D[14] G/Y[8] D[15] G/Y[9] D[16] B/Cb[2] D[17] B/Cb[3] D[18] B/Cb[4] D[19] B/Cb[5] D[20] B/Cb[6] D[21] B/Cb[7]				D[6]	R/Cr[8]
Byte1 D[9] G/Y[3] D[10] G/Y[4] D[11] G/Y[5] D[12] G/Y[6] D[13] G/Y[7] D[14] G/Y[8] D[15] G/Y[9] D[16] B/Cb[2] D[17] B/Cb[3] D[18] B/Cb[4] D[19] B/Cb[5] D[20] B/Cb[6] D[21] B/Cb[7]	L			D[7]	R/Cr[9]
Byte1 D[10] G/Y[4]				D[8]	G/Y[2]
Byte1 D[11] G/Y[5] D[12] G/Y[6] D[13] G/Y[7] D[14] G/Y[8] D[14] G/Y[8] D[15] G/Y[9] D[15] B/Cb[2] D[17] B/Cb[3] D[18] B/Cb[4] D[19] B/Cb[5] D[20] B/Cb[6] D[21] B/Cb[7]				D[9]	G/Y[3]
Вуте2 Вуте Вуте Вуте Вуте Вуте Вуте Вуте Вуте	3		•	D[10]	G/Y[4]
Вуте2 Вуте Вуте Вуте Вуте Вуте Вуте Вуте Вуте	2		Byto1	D[11]	G/Y[5]
Вуте2 Вуте Вуте Вуте Вуте Вуте Вуте Вуте Вуте	25		Dyte	D[12]	G/Y[6]
D[15] G/Y[9] D[16] B/Cb[2] D[17] B/Cb[3] D[18] B/Cb[4] D[19] B/Cb[5] D[20] B/Cb[6] D[21] B/Cb[7]	3			D[13]	G/Y[7]
Byte2 D[18] B/Cb[4] D[19] B/Cb[5] D[20] B/Cb[6] D[21] B/Cb[7]		ge	Po	D[14]	G/Y[8]
Byte2 D[18] B/Cb[4] D[19] B/Cb[5] D[20] B/Cb[6] D[21] B/Cb[7]		mo		D[15]	G/Y[9]
Byte2 D[18] B/Cb[4] D[19] B/Cb[5] D[20] B/Cb[6] D[21] B/Cb[7]		yte		D[16]	B/Cb[2]
Byte2 D[19] B/Cb[5] D[20] B/Cb[6] D[21] B/Cb[7]		4b		D[17]	B/Cb[3]
D[20] B/Cb[6] D[21] B/Cb[7]			Duto 2	D[18]	B/Cb[4]
D[20] B/Cb[6] D[21] B/Cb[7]				D[19]	B/Cb[5]
			byle2	D[20]	B/Cb[6]
D[22] B/Cb[8]			_ 0'	D[21]	B/Cb[7]
			100 ·	D[22]	B/Cb[8]
D[23] B/Cb[9]			, DI	D[23]	B/Cb[9]
D[24]	T	Ī	Ło,	D[24]	
D[25]				D[25]	
D[26] B/Cb[0]				D[26]	B/Cb[0]
D[27] B/Cb[1]			Dud-0	D[27]	
Byte3 D[28] G/Y[0]			Byte3	i	
D[29] G/Y[1]					1/8
D[30] R/Cr[0]				4.7	
D[31] R/Cr[1]				7.0	

3.3. Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Timing Table (DE only Mode)

Signal	Item	Symbol	Min.	Тур.	Max	Unit
1	Period	Tv	2200	2250	2715	Th
Vertical Section	Active	Tdisp (v)				
	Blanking	Tblk (v)	40	90	555	Th
	Period	Th	530	550	600	Tclk
Horizontal Section	Active	Tdisp (h)	nti			
	Blanking	Tblk (h)	50	70	120	Tclk
Clock	Frequency	Fclk=1/Tclk	66	74.25	77	MHz
Vertical Frequency	Frequency	Fv	47	60	63	Hz
Horizontal Frequency	Frequency	Fh	120	135	139.2	KHz

Notes:

- (1) Display position is specific by the rise of DE signal only. Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.
- (2) Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen.
- (3)If a period of DE "High" is less than 3840 DCLK or less than 2160 lines, the rest of the screen displays black.
- (4)The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

The timing diagrams of the input timing

(Lane1~8 V-by one data: 1, 2, 3, 4, 1921, 1922, 1923, 1924)

3.4. Color Input Data Reference

The brightness of each primary color (red, green, blue) is based on the 10 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

COLOR DATA REFERENCE

1SB	REI	0				1/2			V 1	0 0									_						
1SB									(GRE	ΕN									BL	UE				
			151	LS	SB	MS	SB							LS	SB	MS	В							LS	SB
9 R8 R7	R6 R5 F	R4 F	R3 R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	B8	В7	В6	B5	В4	ВЗ	B2	В1	ВС
0 0	0 0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 1	1 1	1	1 1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0	0 0	0	0 0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
0 0	0 0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
0 0	0 0	0	0 0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1 1	1 1	1	1 1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
1 1	1 1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
1 1	1 1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0	0 0	0	0 0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(10)																								
1 1	1 1	1	1 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 1	1 1	1	1 1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0	0 0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0	0 0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
							. [5														
0 0	0 0	0	0 0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
0 0	0 0	0 (0 0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0 0	0 0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
0 0	0 0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
			~\JO ^T	NO Disp	NO Displa	NO Display	NO Display Pl	Display Plus	JO Display Plus	JO Display Plus	JO Display Plus Internal L	JO Display Plus Internal Us	JO Display Plus Internal Uses	JO Display Plus Internal Use.36	JO Display Plus Internal Uses	JO Display Plus Internal Use.36	JO Display Plus Internal Uses	JO Display Plus Internal Us. 36	No Display Plus Internal Uses	JO Display Plus Internal Us. 36	JO Display Plus IA:56:36	JO Display Plus Internal Uses	JO Display Plus Internal Usas	Display Plus Corporation 2021 All Rights Reserved. Page 24 / 37 DISTEC internal use only - provided by roselin on 2022/04/12	No Display Plus IA:56:36

3.5. Power Sequence for LCD

Parameter	Min.	Тур.	Max	Unit
t1	0.4		30	ms
t2	40	edel		ms
t3	640	-10	0,4,4	ms
t4	0*1	115 USE		ms
t5	0	-2	6	ms
t6	130	mte 56.	*2	ms
t7	1000	77.77		ms
Т8	640	0 ^A		ms
T9	150			ms

Note:

- (1) t4=0: concern for residual pattern before BLU turn off.
- (2) t6: voltage of VDD must decay smoothly after power-off. (customer system decide this value)
- (3) When the power supply input voltage(VDD) is off, be sure to pull down the valid and the invalid data to 0V.

3.6 Backlight Specification

3.6.1 Electrical specification (Ta = 25 ± 2 °C)

	14	Item Symbol			1:3b	Spec		11	Note								
	item	Syn	IDOI	Condition	Min	Тур	Max	Unit	Note								
1	Input Voltage	VDDB		17-	22.8	24	25.2	VDC	-								
2	Input Current	I _{DDB}		I _{DDB}		I _{DDB}		I _{DDB}		I _{DDB}		VDDB=24V		3.06	3.31	ADC	1
3	Input Power	P _{DDB}		P_{DDB}		VDDB=24V		73.5	79.5	W	1						
4	Inrush Current	I _{RUSH}		VDDB=24V		a -	5.8	ADC	2								
5	On/Off control voltage	V	ON	2	3.3	5.5	5.5	VDC	-								
3		V _{BLON}	OFF	0	0.8	0.8	8.0	VDC	-								
6	On/Off control current	I _{BL}	.on	VDDB=24V)3-	-	1.5	mA	-								
7	External PWM	V EPWM	MAX	2	2. 5	-	5.5	VDC	-								
'	Control Voltage	V_EPVVIVI	MIN	0	-	-	8.0	VDC	-								
8	External PWM Control Current	I_EPWM		VDDB=24V	-	-	2	mADC	-								
9	External PWM Duty ratio	D_EPWM		VDDB=24V	5	-	100	%	3								
10	External PWM Frequency	F_EF	PWM	VDDB=24V	120	180	960	Hz	-								
11	Input Impedance	R	in	VDDB=24V	300	a		Kohm	-								

Note 1 : Dimming ratio= 100% (MAX) (Ta=25±5°C, Turn on for 45minutes)

Note 2: Measurement condition Rising time = 20ms (VDDB: 10%~90%);

Note 3: Less than 5% dimming control is functional well and no backlight shutdown happened

3.6.2 Input Pin Assignment

LED driver board connector: Cvilux Cl0114M1HR0-NH or compatible

Pin	Symbol	Description
1	VDDB	Operating Voltage Supply, +24V DC regulated
2	VDDB	Operating Voltage Supply, +24V DC regulated
3	VDDB	Operating Voltage Supply, +24V DC regulated
4	VDDB	Operating Voltage Supply, +24V DC regulated
5	VDDB	Operating Voltage Supply, +24V DC regulated
6	BLGND	Ground and Current Return
7	BLGND	Ground and Current Return
8	BLGND	Ground and Current Return
9	BLGND	Ground and Current Return
10	BLGND	Ground and Current Return
11	NC C	NC
12	VBLON	BLU On-Off control: High/Open (2~5.5V) : BL On ; Low (0~0.8V/GND) : BL Off
13	NC	NC
14	PDIM(*)	External PWM (5%~100% Duty, open for 100%)

PWM Dimming: include Internal and External PWM Dimming

Note: IF External PWM function includes 5% dimming ratio. Judge condition as below:

- (1) Backlight module must be lighted ON normally.
- (2) All protection function must work normally.

Uniformity and flicker could NOT be guaranteed

3.6.3 Power Sequence for Backlight

Dip condition

Danamatan		I India		
Parameter	Min	Тур	Max	Units
T1	20	210-	5	ms
T2	250	-keY	£6:5-	ms
Т3	200			ms
T4	0	1	-	ms
Т5	0	0	-	ms
T6 💪 🔾	50.	-	1000	ms*1

Note: 1. T6 describes VDDB dip condition and VDDB couldn't lower than 10% VDDB.

3.6.4 **LED Operating Life Time**

Parameter	Symbol	coni	Value	Unit	Note	
raiametei	Symbol	Min.	Тур.	Max	Unit	Note
Backlight Operating Life Time(MTTF)		70000	26		Hour	1

Note:

- 1. The lifetime (MTTF) is defined as the time which luminance of LED is 50% compared to its original value. [Operating condition: Continuous operating at Ta = 25±2°C, for single lamp/LED only]
- 2. MTTF is a reference index, it is not representative of warranty.

Reliability Test Items

	Test Item	Q'ty	Condition
	High temperature storage test	3 15	60°C, 500hrs
2	Low temperature storage test	3	-20℃, 500hrs
3	High temperature operation test	3	50℃, 500hrs
ļ	Low temperature operation test	3	-5℃, 500hrs
	100	22	Wave form: random
	£0, 1		Vibration level : 1.0G RMS
	Vibration test (non-operation)		Bandwidth : 10-300Hz
			Duration :
5		3	X axis, Vertical, 10min
			Y axis, Vertical, 10min
			Z axis, Vertical, 10min
			one time each direction
		21 10	
	Disp.	1000	Shock level
6	Shock test (non-operation)	3	50G ,11ms ±X,Y,Z axis
		-20A	Waveform: half sine wave
		17.	Direction: One time each direction
	60.		Random wave (1.04Grms 2~200Hz)
7	Vibration test (With carton)	1CTN/10PCS	Duration: X,Y,Z 20min per axes
			- lal
	Drop test (With carton)		Height: 25.4 cm
3	Drop test (With carton)	1CTN/10PCS	Front->Back->Left->Right->Bottom / 2 nd time

International Standard

4.1 Safety

- (1) UL 62368-1; Audio/video, information and communication technology equipment Part 1: Safety requirements.
- (2) IEC 62368-1; Audio/video, information and communication technology equipment Part 1: Safety requirements.
- (3) EN 62368-1; Audio/video, information and communication technology equipment Part 1: Safety requirements.

4.2 **EMC**

- (1) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information
 - Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC), 1998 AUO Display Plus Confidential Use Only Plus Conf

5 <u>Packing</u>

5.1 <u>Definition of Label</u>

A. Panel Label:

Green mark description

- (1) For Pb Free Product, AUO will add for identification.
- (2) For RoHs compatible products, AUO will add RoHS for identification.

Note: The green Mark will be present only when the green documents have been ready by AUO internal green team. (definition of green design follows the AUO green design checklist.)

B. Carton Label:

5.2 Packing Methods

5.3 Pallet and Shipment Information

	Itana		Dooking Domork			
	Item	Qty.	Dimension	Weight (kg)	Packing Remark	
1	Packing Box	10 pcs/box	1060(L)*560(W)*635(H)	1060(L)*560(W)*635(H) 98.7		
2	Pallet	1	1150(L)*1100(W)*132(H)	15.6		
3	Boxes per Pallet	2151	One pallet			
4	Panels per Pallet	()	One pallet			
5	Pallet after packing	20 pcs	1150(L)*1070(W)*767(H)	213	One pallet	
		(by Air)	(by Air)	(by Air)	One pallet	
		40 pcs	1150(L)*1070(W)*1534(H)	426	Double pellet	
		(by Sea)	(by Sea)	(by Sea)	Double pallet	

Single pallet packaging illustration

6 Precautions

Please pay attention to the followings when you use this TFT LCD module.

6.1 Mounting Precautions

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter cause circuit broken by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

6.2 Operating Precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer..)
- (3) Brightness depends on the temperature. (In lower temperature, it may become lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may

be important to minimize the interface.

6.3 Operating Condition for Public Information Display

The device listed in the product specification is designed and manufactured for PID (Public Information Display) application. To optimize module's lifetime and function, below operating usages are required.

- (1) Normal operating condition
 - A. Operating temperature: 0~50°C
 - B. Operating humidity: 10~90%
 - C. Display pattern: dynamic pattern (Real display).Note) Long-term static display would cause image sticking.
- (2) Operation usage to protect against image sticking due to long-term static display.
 - A. Suitable operating time: 24 hours a day or less.
 - (* The moving picture can be allowed for 24 hours a day)
 - B. Liquid Crystal refresh time is required. Cycling display between 5 minutes' information (static) display and 10 seconds' moving image.
 - C. Periodically change background and character (image) color.
 - D. Avoid combination of background and character with large different luminance.
- (3) Periodically adopt one of the following actions after long time display.
 - A. Running the screen saver (motion picture or black pattern)
 - B. Power off the system for a while
- (4) LCD system is required to place in well-ventilated environment. Adapting active cooling system is highly recommended.
- (5) Product reliability and functions are only guaranteed when the product is used under right operation usages. If product will be used in extreme conditions, such as high temperature/ humidity, display stationary patterns, or long operation time etc..., it is strongly recommended to contact AUO for filed application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stock market and controlling systems.

6.4 Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

6.5 Precautions for Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

6.6 Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- (3) Storage condition is guaranteed under packing conditions.
- (4) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition.

6.7 Handling Precautions for Protection Film

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Germany

FORTEC Elektronik AG

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894450-0
E-Mail: info@fortecag.de
Internet: www.fortecag.de

Fortec Group Members

Austria

Distec GmbH Office Vienna

Nuschinggasse 12 1230 Wien

Phone: +43 1 8673492-0
E-Mail: info@distec.de
Internet: www.distec.de

Germany

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894363-0 E-Mail: info@distec.de Internet: www.distec.de

Switzerland

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

Phone: +41 44 7446111
E-Mail: info@altrac.ch
Internet: www.altrac.ch

United Kingdom

Display Technology Ltd.

Osprey House, 1 Osprey Court Hinchingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600

E-Mail: <u>info@displaytechnology.co.uk</u>
Internet: <u>www. displaytechnology.co.uk</u>

USA

APOLLO DISPLAY
TECHNOLOGIES
A FORTEC GROUP MEMBER

 ${\bf Apollo\ Display\ Technologies,\ Corp.}$

87 Raynor Avenue, Unit 1 Ronkonkoma, NY 11779

Phone: +1 631 5804360
E-Mail: info@apollodisplays.com
Internet: www.apollodisplays.com