

Datasheet

InnoLux

G104ACE-LH1

CH-01-091

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: G104ACE SUFFIX: LH1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for you signature and comments.	ur confirmation with your

Approved By	Checked By	Prepared By
林秋森	吳承旻	阮志昌

Version 2.0 24 October 2023 1 / 41

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURE	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	7
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
2.2 ELECTRICAL ABSOLUTE RATINGS	8
2.2.1 TFT LCD MODULE	8
2.2.2 BACKLIGHT UNIT	
3. ELECTRICAL CHARACTERISTICS	9
3.1 TFT LCD MODULE	9
3.2 BACKLIGHT UNIT	
4. BLOCK DIAGRAM	12
4.1 TFT LCD MODULE	
5. INPUT TERMINAL PIN ASSIGNMENT	
5.1 TFT LCD MODULE	
5.2 COLOR DATA INPUT ASSIGNMENT	
6. INTERFACE TIMING	
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
6.2 POWER ON/OFF SEQUENCE	
6.3 The INPUT DATA FORMAT	
6.4 SCANNING DIRECTION	
7. OPTICAL CHARACTERISTICS	
7.1 TEST CONDITIONS	
7.2 OPTICAL SPECIFICATIONS	
8. RELIABILITY TEST CRITERIA	
9. PACKAGE	
9.1 PACKAGE SPECIFICATIONS	
9.2 PACKAGE METHOD	
9.3 UN- PACKAGE METHOD	
10. DEFINITION OF LABELS	
10.1 INX MODULE LABEL	
11. PRECAUTIONS	
11.1 ASSEMBLY AND HANDLING PRECAUTIONS	31

Appendix. SYSTEM COVER DESIGN NOTICE	35
12. MECHANICAL CHARACTERISTICS	33
11.3 OTHER PRECAUTIONS	32
11.2 STORAGE PRECAUTIONS	31
#1 /#370 -0	

REVISION HISTORY

Version	Date	Page	Description
Ver 2.0	23 Otc 2023	All	Approval Specification was first issued.

Version 2.0 24 October 2023 4 / 41

INNOLUX 群創光電

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G104ACE-LH1 is a 10.4" TFT Liquid Crystal Display IAV module with LED Backlight units and 30 pins LVDS interface. This module supports 800 x 600 SVGA mode and can display 16.7M/262k colors.

The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 10.4" SVGA LCD panel and the LED driving device for Backlight is built in PCBA.

1.2 FEATURE

- Wide viewing angle
- High contrast ratio
- Fast response time
- SVGA (800 x 600 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 1pixel/clock
- PSWG (Panel Standardization Working Group)
- Wide operating temperature.
- RoHS compliance

1.3 APPLICATION

- -TFT LCD Monitor
- Factory Application
- Amusement

1.4 GENERAL SPECIFICATIONS

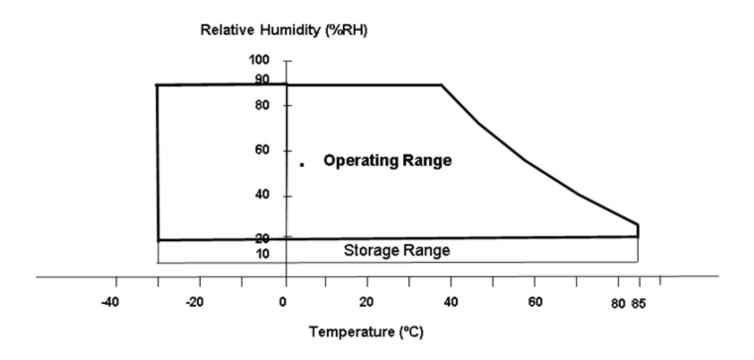
Item	Specification	Unit	Note
Active Area	211.2 (H) x 158.4(V) (10.4" diagonal)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	800 x R.G.B x 600	pixel	-
Pixel Pitch	0.264(H) x 0.264(W)	mm	-
Pixel Arrangement	RGB vertical Stripe	-	-
Display Colors	16.7M / 262K	color	-
Display Mode	Normally Black	-	-
Surface Treatment	Hard Coating (2H), Anti-Glare	-	-
Module Power Consumption	5.2	W	Тур.

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note	
Module Size	Horizontal(H)	242.5	243	243.5	mm		
	Vertical(V)	183.5	184	184.5	mm	(1)	
	Depth(D)	7.5	8	8.5	mm		
D. J.A.	Horizontal	213.9	214.2	214.5	mm	-	
Bezel Area	Vertical	161.3	161.6	161.9	mm		
Active Area	Horizontal	-	211.2	-	mm		
Active Area	Vertical	-	158.4	-	mm		
Weight		-	400	420	g		

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

lto m	Cumbal	Va	lue	Lloit	Note	
Item	Symbol	Min.	Max.	Unit		
Operating Ambient Temperature	T _{OP}	-30	+85	$^{\circ}\!\mathbb{C}$	(1)(2)	
Storage Temperature	T _{ST}	-30	+85	$^{\circ}\!\mathbb{C}$	(1)(2)	

Note (1)

- (a) 90 %RH Max.
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note (2) Panel surface temperature should be 0° C min. and 85° C max under Vcc=5.0V, fr =60Hz, typical LED string current, 25° C ambient temperature, and no humidity control . Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 85° C (Panel sureface temperature).

Version 2.0 24 October 2023 **7 / 41**

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

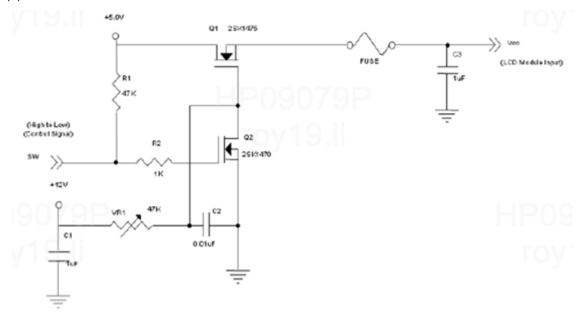
Item	Symbol	Value		Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	VCC	-0.3	5.5	V	(1)	
Logic Input Voltage	Vin	-0.3	3.6	V	(1)	

2.2.2 BACKLIGHT UNIT

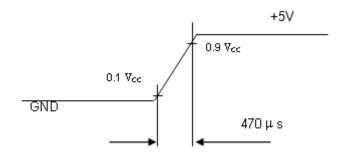
Item	Symbol	Val	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Converter Voltage	Vi	-0.3	18	V	(1), (2)	
Enable Voltage	EN		5.5	V		
Backlight Adjust	Dimming		5.5	V		

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to 3.2 for further information).

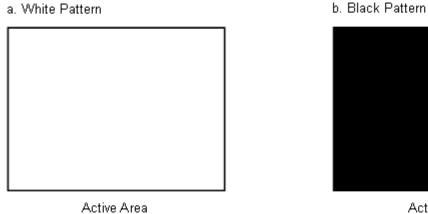

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE


Daramatar	Cumbal		Value	Unit	Note		
Parameter	Symbol	Min.	Тур.	Max.	Unit	note	
Power Supply Vo	ltage	V _{CC}	4.5	5	5.5	V	-
Ripple Voltag	е	V_{RP}	ı	ı	300	mVp-p	
Inrush Current		I _{INRUSH}	ı	ı	2.5	Α	(2)
Davier Comple Correct	White	lcc	ı	195	235	mA	(3)a
Power Supply Current	Black	ICC	-	85	105	mA	(3)b
LVDS differential inpu	ıt voltage	V_{id}	200	-	600	mV	(5)
LVDS common input voltage		V _{ic}	1.0	1.2	1.4	V	(5)
Differential Input Voltage for	"H" Level	V_{IH}	1	-	100	mV	-
LVDS Receiver Threshold	"L" Level	V _{IL}	-100	-	-	mV	-
Terminating Res	istor	R_T	-	100	-	Ohm	-

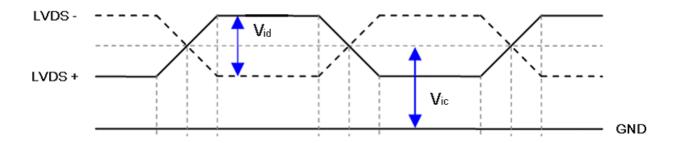
Note (1)The module should be always operated within above ranges.

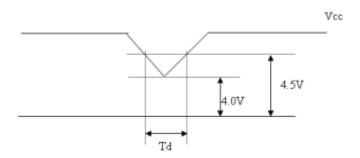
Note (2) Measurement Conditions:


VCC rising time is 470μ s

Version 2.0 24 October 2023 9 / 41

Note (3) The specified power supply current is under the conditions at V_{DD} =5V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.




Active Area

Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) VID waveform condition

Note (6) Dip condition: $4.0V \le Vcc \le 4.5V$, $Td \le 20ms$

Version 2.0 24 October 2023 10 / 41

1KHz.

3 2 BACKLIGHT LINIT

Parame	ator.	Cumbal		Value		Unit	Note
Parame	eter	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Inp	ut Voltage	Vi	10.8	12.0	13.2	V_{DC}	(Duty 100%)
Converter Input F	Ripple Voltage	V_{iRP}	-	-	350	mV	
Converter Inp	ut Current	l _i	1	0.35	0.41	A _{DC}	@ Vi = 12V (Duty 100%)
Converter Inru	sh Current	I _{iRUSH}	1	1	3.0	А	@ Vi rising time=20ms (Vi=12V)
Input Power Co	onsumption	Pi	1	4.2		W	(1) ,@ Vi = 12V (Duty 100%)
EN Control Level	Backlight on	ENLED	2.5	3.3	5.0	V	
EN Control Level	Backlight off	(BLON)	0	1	0.3	V	
PWM Control Level	PWM High Level	Dimming	2.5	-	5.0	V	
P VV IVI COI III OI Level	PWM Low Level	(E_PWM)	0	-	0.15	V	
PWN Noise	Range	VNoise	-	-	0.1	V	
PWM Control	Frequency	f_{PWM}	190	200	20k	Hz	(2)
DIAMA Director of Co	ntrol Duty Datio		5	-	100	%	(2), @ 190Hz <f<sub>PWM<1kHz</f<sub>
PWM Dimming Co	ntroi Duty Katio	-	20	-	100	%	(2), @ 1kHz≦f _{PWM} <20kHz
LED Life	Time	L _{LED}	50,000		-	Hrs	(3)

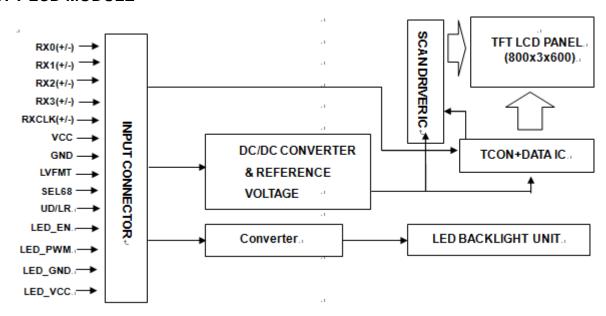
Note (1)LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%.

1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%.

If PWM control frequency is applied in the range from 1KHz to 20KHZ, The"non-linear"phenomenon on the Backlight Unit may be found. So It's a suggestion that PWM control frequency should be less than

Note (3) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ±2 °C and Duty 100% until the brightness becomes ≤ 50% of its original value.


Operating LED at high temperature condition will reduce life time and lead to color shift.

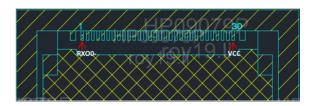
Version 2.0 24 October 2023 11 / 41

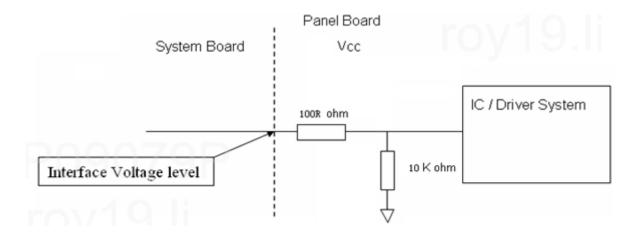
4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE


Pin No.	Symbol	Function	Polarity	Note
1	RXO0-	Negative LVDS differential data input. Channel O0	Negative	
2	RXO0+	Positive LVDS differential data input. Channel O0	Positive	
3	RXO1-	Negative LVDS differential data input. Channel O1	Negative	
4	RXO1+	Positive LVDS differential data input. Channel O1	Positive	
5	RXO2-	Negative LVDS differential data input. Channel O2	Negative	
6	RXO2+	Positive LVDS differential data input. Channel O2	Positive	
7	GND	Ground		
8	RXOC-	Negative LVDS differential clock input.	Negative	
9	RXOC+	Positive LVDS differential clock input.	Positive	
10	RXO3-	Negative LVDS differential data input. Channel O3	Negative	
11	RXO3+	Positive LVDS differential data input. Channel O3	Positive	
12	GND	Ground		
13	LVFMT	LVDS VESA / JEIDA select function control, NC → VESA Format (Default).; Low → JEIDA Format		(3)(4)
14	LED_PWM	Backlight Adjust (PWM Dimming 190-210Hz,H: 3.3VDC, L: 0VDC)		
15	LED_EN	Enable pin 3.3V		
16	LED_GND	Converter ground		
17	LED_GND	Converter ground		
18	LED_GND	Converter ground		
19	NC	Not connection, this pin should be open		
20	LED_VCC	Converter input voltage 12V		
21	LED_VCC	Converter input voltage 12V		
22	LED_VCC	Converter input voltage 12V		
23	NC	Not connection, this pin should be open		
24	NC	Not connection, this pin should be open		
25	SEL68	LVDS 6/8 bit select function control, Low → 6 bit Input Mode. High → 8bit Input Mode		(3)(4)
26	NC	Not connection, this pin should be open		
27	NC	Not connection, this pin should be open		
28	UD/LR	Reverse Scan Control, Low → Normal Mode. High → Reverse Scan		(3)(4)
29	VCC	Power supply 5V		
30	VCC	Power supply 5V		


Note (1) Connector Part No.: STM MSAK24025P30MB(Exterior silver) or I-PEX 20455-030E-76(Exterior gold) or equivalent.

- Note (2) User's connector Part No.: I-PEX20453-030T-03 or equivalent.
- Note (3) "Low" stands for 0V. "High" stands for 3.3V.
- Note (4) Interface optional pin has internal scheme as following diagram, Customer should keep the interface voltage level requirement which including panel board loading as below.

Note (5) Pin1 location is RXO0- to comply with mechanical characterics

5.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color.

		Data Signal																	
	Color			Re						Gre							ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	L	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1)0: Low Level Voltage, 1: High Level Voltage

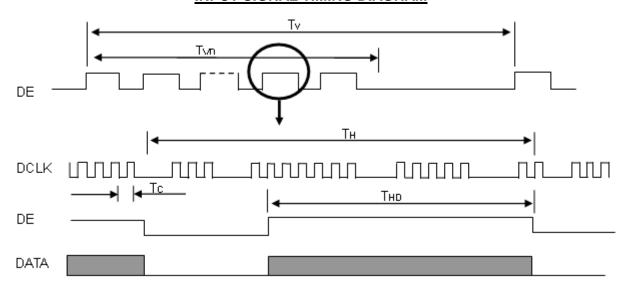
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

			Data Signal																						
	Color				Re								Gre								Bl				
	T	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2		G0	B7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
l	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INCU	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
GICCII	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diag	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1)0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

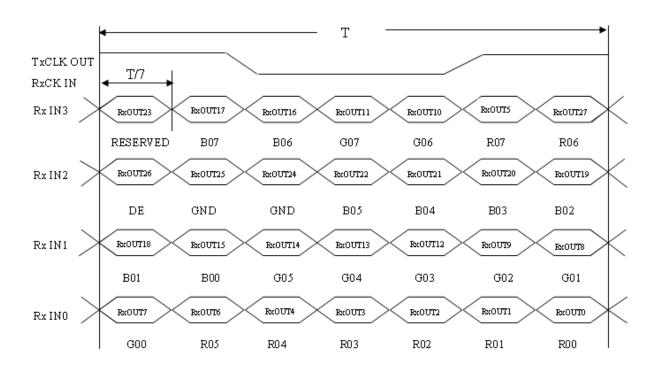
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

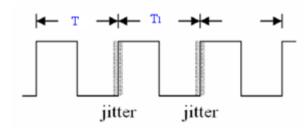

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _r	34	40	48	MHz	-
	Period	T _c	29.4	25	20.83	ns	
11/100 01: 1	Input Clock to data skew	TLVCCS	-	-	0.25	UI	(a)
LVDS Clock	Spread spectrum modulation range	F _{clkin_mod}	-1.5		1.5	%	(b)
	Spread spectrum modulation frequency	F _{SSM}	25	-	90	KHz	(b)
	Frame Rate	F _r	60	60	60	Hz	1
Vertical Display	Total	T _v	610	628	760	T _h	$Tv=T_{vd}+T_{vb}$
Term	Active Display	T_{vd}	600	600	600	T _h	-
	Blank	T_{vb}	10	28	160	T _h	-
	Total	T _h	970	1056	1100	T _c	$T_h = T_{hd} + T_{hb}$
Horizontal Display Term	Active Display	T_{hd}	800	800	800	T _c	-
IGIIII	Blank	T _{hb}	170	256	300	T _c	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

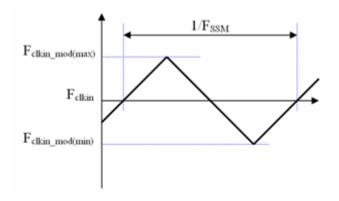
Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.

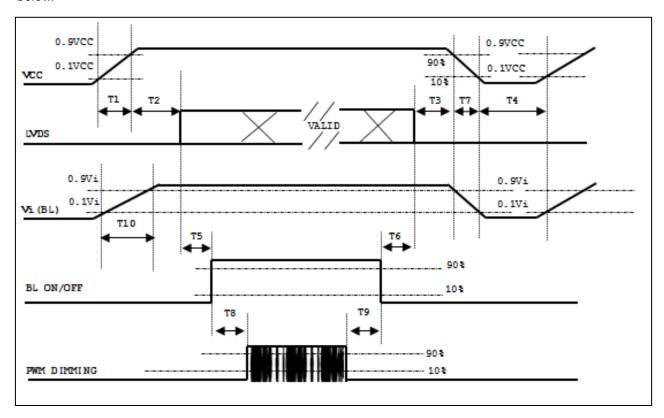

INPUT SIGNAL TIMING DIAGRAM



Version 2.0 24 October 2023 17 / 41

TIMING DIAGRAM of LVDS


Note (a) Input Clock to data skew is defined as below figures.



Note (b) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Version 2.0 24 October 2023 19 / 41

Doromotor		Value		Lloito
Parameter	Min	Тур	Max	Units
T1	0.5	ı	10	ms
T2	0	ı	50	ms
T3	0	-	50	ms
T4	500	-	-	ms
T5	450	-	-	ms
T6	200	-	-	ms
T7	10	-	100	ms
Т8	10	-	-	ms
T9	10	1	-	ms
T10	20	-	50	ms

Note:

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec".

6.3 The INPUT DATA FORMAT

SEL 6/8="Low" for 6 Bits LVDS RXC R5 R4 R3 R1 R0 B0 **B5** SEL 6/8="High" for 8 Bits LVDS RXC G0 R5 R3 RO RX0 B1 B0 RX1 G5 G4 G3 G2 G1 RX2 VS HS **B3** B2 RX3 **B**7 B6 R7

Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	Section Action of the American Contraction
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	4,000,000,000,000,000,000,000,000,000,0
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-	8	
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

6.4 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan

Fig.2 Reverse Scan

PCBA on the Top side

PCBA on the Top side

- Fig. 1 Normal scan (pin 28, UD/LR = Low)
- Fig. 2 Reverse scan (pin 28, UD/LR = Hight)

6.5. LVDS INPUT SIGNAL SPECIFICATIONS

6.5.1 LVDS DATA INPUT DATA FORMAT (VESA/ JEIDA) - 6bit

LVDS Channel 0	LVDS output	D 7	D6	D4	D3	D2	D1	D0
LVDS Channel 0	Data order	G0	R5	R4	R3	R2	R1	R0
LVDS Channel 1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVDS Channel 1	Data order	B1	В0	G5	G4	G3	R1	G1
LVDC Channel 2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS Channel 2	Data order	DE	GND	GND	В5	B4	D9 G2 D20	B2

Note (1) Pin 13, LVFMT = NC

6. 5.2 LVDS DATA INPUT DATA FORMAT (VESA) - 8bit

LVDS Channel 0	LVDS output	D7	D6	D4	D3	D2	D1	D 0
LVDS Channel 0	Data order	G0	R5	R4	R3	R2	R1	R0
LVDS Channel 1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVDS Channel 1	Data order	B1	В0	G5	G4	G3	G2	G1
LVDS Channel 2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS Channel 2	Data order	DE	GND	GND	В5	B4	В3	B2
LVDC Channel 2	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVDS Channel 3	Data order	NA	В7	В6	G7	G6	R7	R6

Note (2) Pin 13, LVFMT = NC

6. 5.3 LVDS DATA INPUT DAT FORMAT (JEIDA) - 8bit

LVDS Channel 0	LVDS output	D 7	D6	D4	D3	D2	D1	D0
LVDS Channel 0	Data order	G2	R7	R6	R5	R4	R3	R2
LVDS Channel 1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVDS Channel 1	Data order	В3	B2	G7	G6	G5	G4	G3
LVDC Channel 2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS Channel 2	Data order	DE	GND	GND	В7	В6	B5	B4
TAIDG CL 12	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVDS Channel 3	Data order	NA	B1	В0	G1	G0	R1	R0

Note (3) Pin 13, LVFMT = GND

Note(4): Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

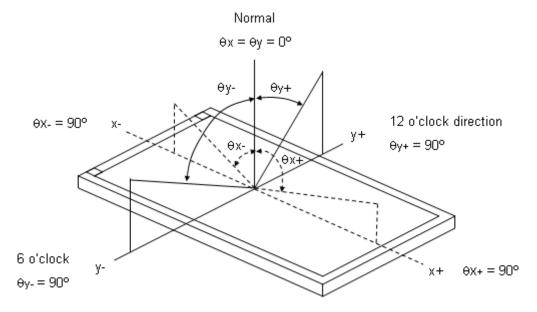
Item	Symbol	Value	Unit						
Ambient Temperature	Ta	25±2	оС						
Ambient Humidity	Ha	50±10	%RH						
Supply Voltage	According to typical value and tolerance in								
Input Signal	"ELE("ELECTRICAL CHARACTERISTICS"							
PWM Duty Ratio	D	100	%						

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5).

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx		0.595	0.645	0.695		
	Reu	Ry		0.290	0.340	0.390		
	Green	Gx		0.270	0.320	0.370		
Color	Gie	Gy		0.555	0.605	0.655		(1), (5)
Chromaticity	Blue	Bx	θX=0°, θY =0°	0.102	0.152	0.202	_	(1), (3)
	Dide	Ву	Grayscale Maximum	0.000	0.050	0.100		
	White	Wx		0.263	0.313	0.363		
	vviiite	Wy		0.279	0.329	0.379		
Center Lumina	nce of White	LC		320	400			(4), (5)
Contrast	Ratio	CR		800	1000			(2), (5)
Respons	a Tima	TR	θX=0°, θY =0°	-	13	18	-	(3)
Respons	e mine	TF	₩=0 , ₩1 =0	-	12	17	-	(3)
White Va	riation	δW	$\theta X=0^{\circ}, \ \theta Y=0^{\circ}$	72	80	-	%	(5), (6)
	Horizontal	θX+		80	89	-		
Viewing Angle	Honzontai	θX-	CR≧10	80	89	-	Deg.	(1), (5)
Viewing Angle	Vertical	θΥ+	OIN≡ 10	80	89	-	Deg.	(1), (3)
	vertical	θΥ-		80	89	-		

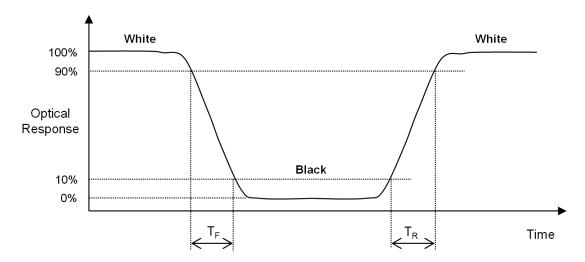
Definition:


Grayscale Maximum: Grayscale 255 (10 bits: grayscale 1023; 8 bits: grayscale 255; 6 bits: grayscale 63)

White: Luminance of Grayscale Maximum (All R,G,B)

Black: Luminance of grayscale 0 (All R,G,B)

Note (1)Definition of Viewing Angle (θx , θy):

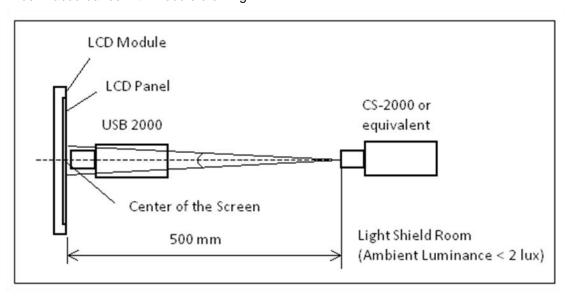


Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression at center point.

Contrast Ratio (CR) = White / Black

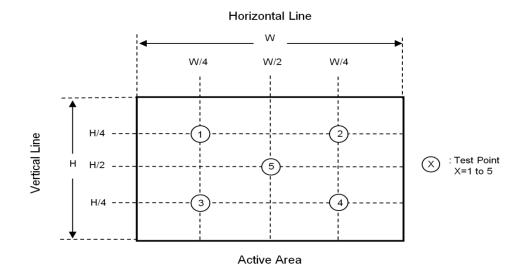
Note (3)Definition of Response Time (T_R, T_F) :



Note (4) Definition of Luminance of White (L_C):

Measure the luminance of White at center point.

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing.

Note (6) Definition of White Variation (δW):

Measure the luminance of White at 5 points.

Luminance of White: L(X), where X is from 1 to 5.

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	85℃, 240 hours	
Low Temperature Storage Test	-30°C, 240 hours	
Thermal Shock Storage Test	-30° C, 0.5 hour \longleftrightarrow 70 $^{\circ}$ C, 0.5 hour; 100cycles, 1 hour/cycle)	(1),(2) (4),(5)
High Temperature Operation Test	85℃, 240 hours	
Low Temperature Operation Test	-30°C, 240 hours	
High Temperature & High Humidity Operation Test	60℃, RH 90%, 240 hours	
ESD Test (Operation)	150pF, 330Ω , 1 sec/cycle	
	Condition 1 : panel contact, ±8 KV	(1), (4)
	Condition 2 : panel non-contact ±15 KV	
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for ± X, ± Y, ± Z direction	
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 3 cycles each X, Y, Z direction	(2), (3)

- Note (1) There should be no condensation on the surface of panel during test,
- Note (2) Temperature of panel display surface area should be 85°C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

9. PACKAGE

9.1 PACKAGE SPECIFICATIONS

- (1) 16pcs LCD modules / 1 Box
- (2) Box dimensions: 435 (L) X 350 (W) X 275 (H) mm
- (3) Weight: approximately 9.2Kg (16 modules per box)

9.2 PACKAGE METHOD

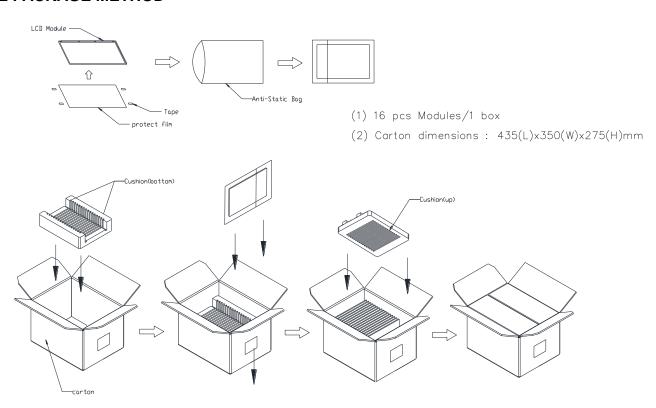


Figure. 9-1 Packing method

Version 2.0 24 October 2023 28 / 41

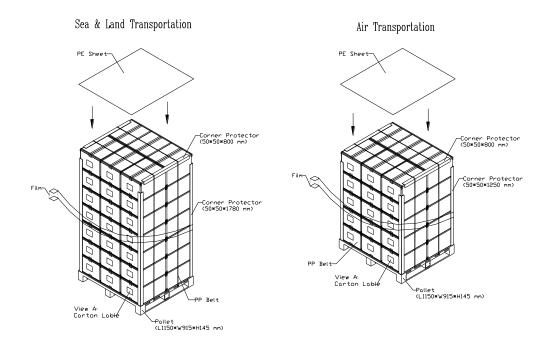


Figure. 9-2 Packing method

9.3 UN- PACKAGE METHOD

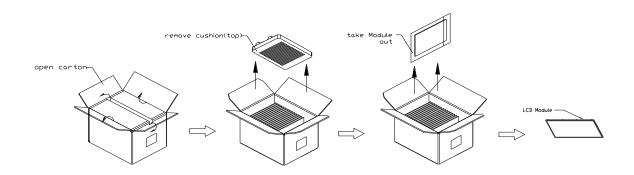
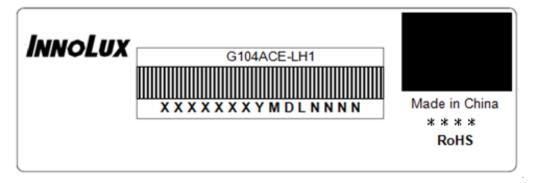


Figure. 9-3 UN-Packing method

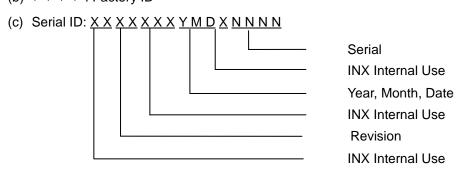
Version 2.0 24 October 2023 29 / 41



10. DEFINITION OF LABELS

10.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.



Note (1) Safety Compliance(UL logo) will open after C1 version.

(a) Model Name: G104ACE-LH1

(b) * * * * : Factory ID

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2021~2029

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

INNOLUX 群創光電

PRODUCT SPECIFICATION

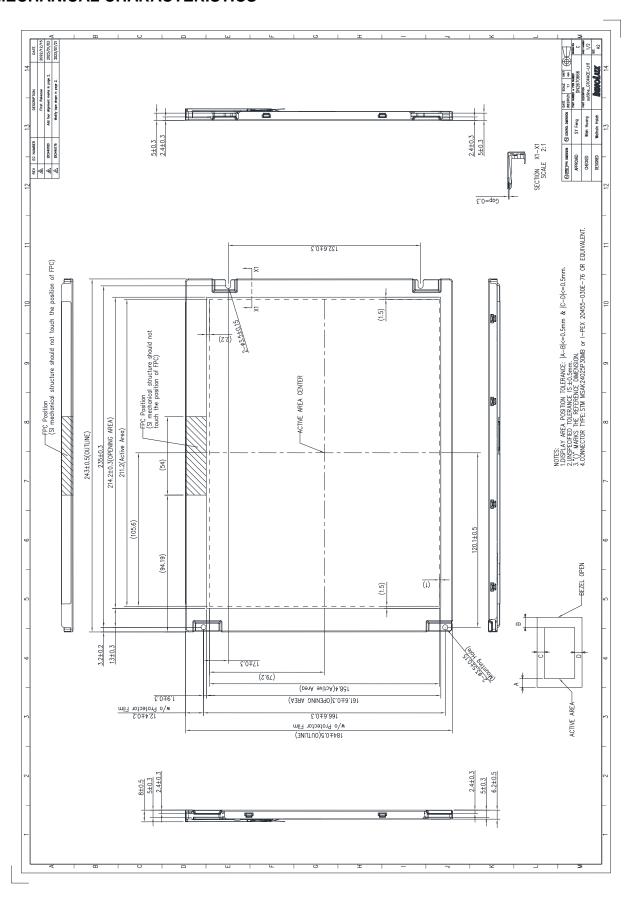
11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

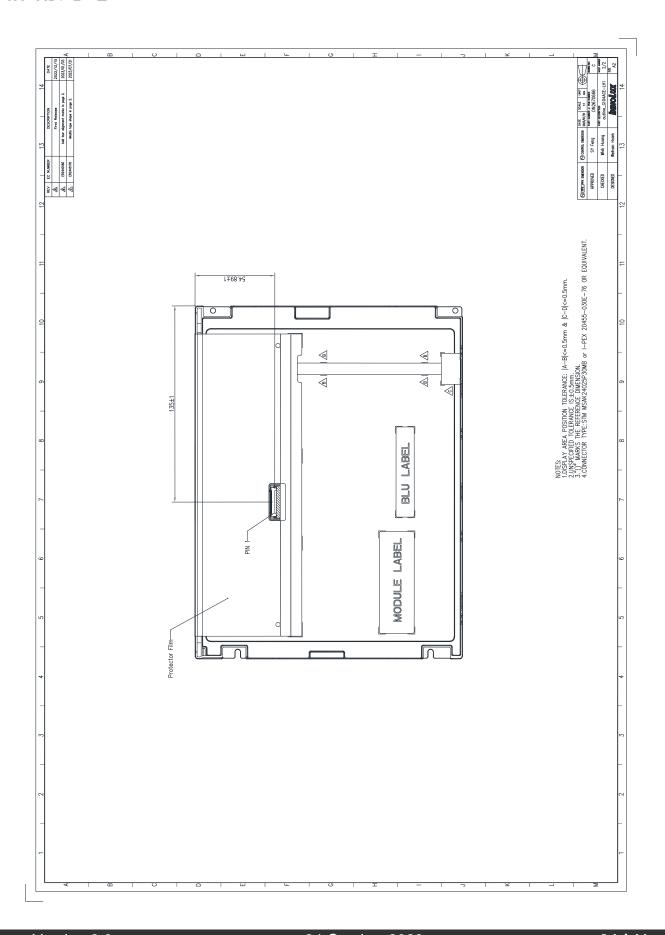
- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

11.2 STORAGE PRECAUTIONS

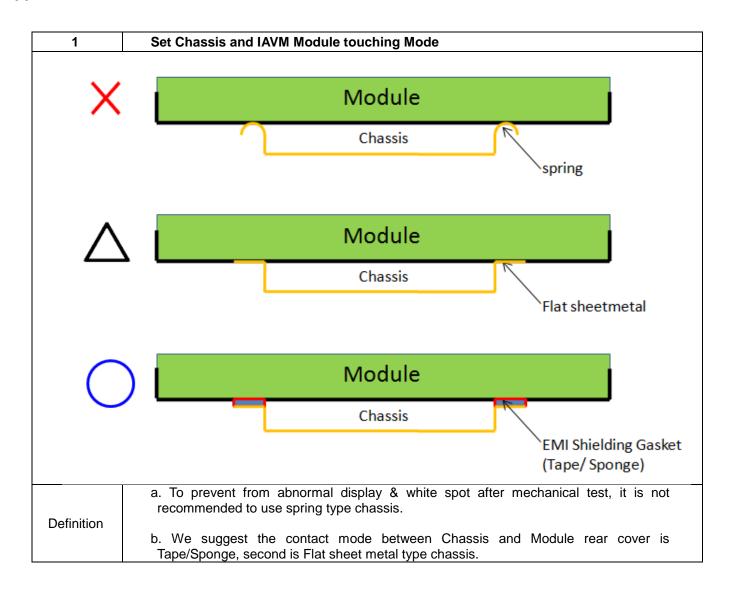
- (1)When storing for a long time, the following precautions are necessary.
 - (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH.
 - (b) The polarizer surface should not come in contact with any other object.
 - (c) It is recommended that they be stored in the container in which they were shipped.
 - (d) Storage condition is guaranteed under packing conditions.
 - (e) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

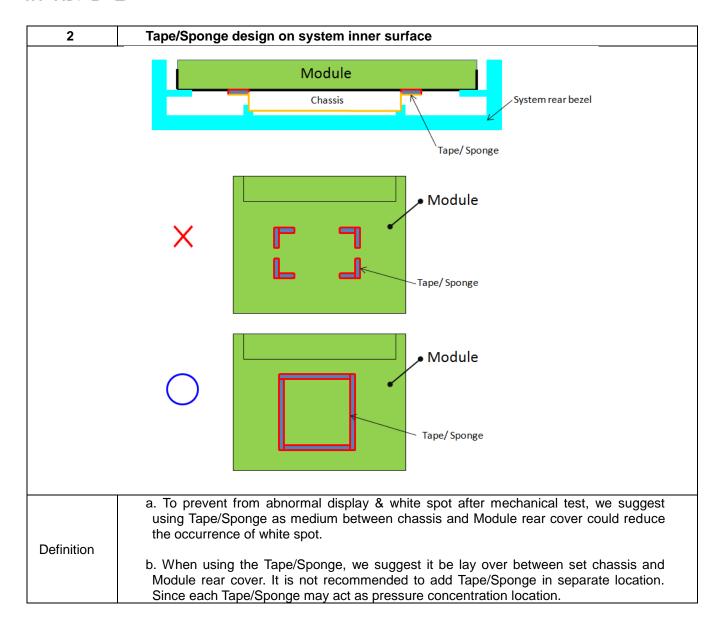


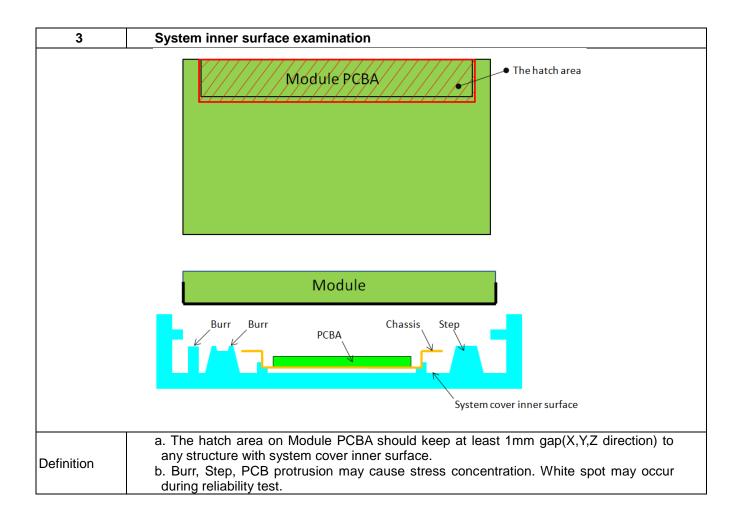
11.3 OTHER PRECAUTIONS

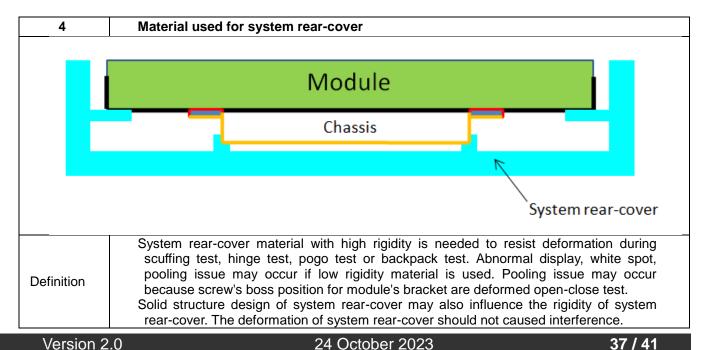

- (1) Normal operating condition
 - (a) Display pattern: dynamic pattern (Real display)
 - (Note) Long-term static display can cause image sticking.
- (2) Operating usages to protect against image sticking due to long-term static display
 - (a) Suitable operating time: under 16 hours a day.
 - (b) Static information display recommended to use with moving image.
 - (c)Cycling display between 5 minutes' information(static) display and 10 seconds' moving image
- (3) Abnormal condition just means conditions except normal condition.

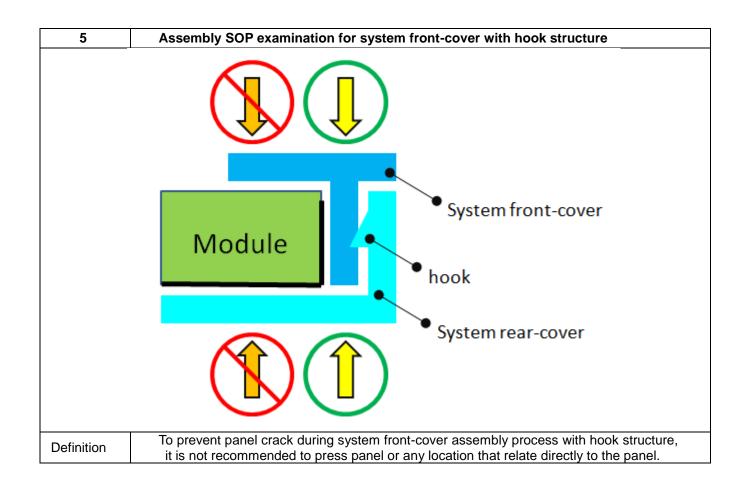
12. MECHANICAL CHARACTERISTICS

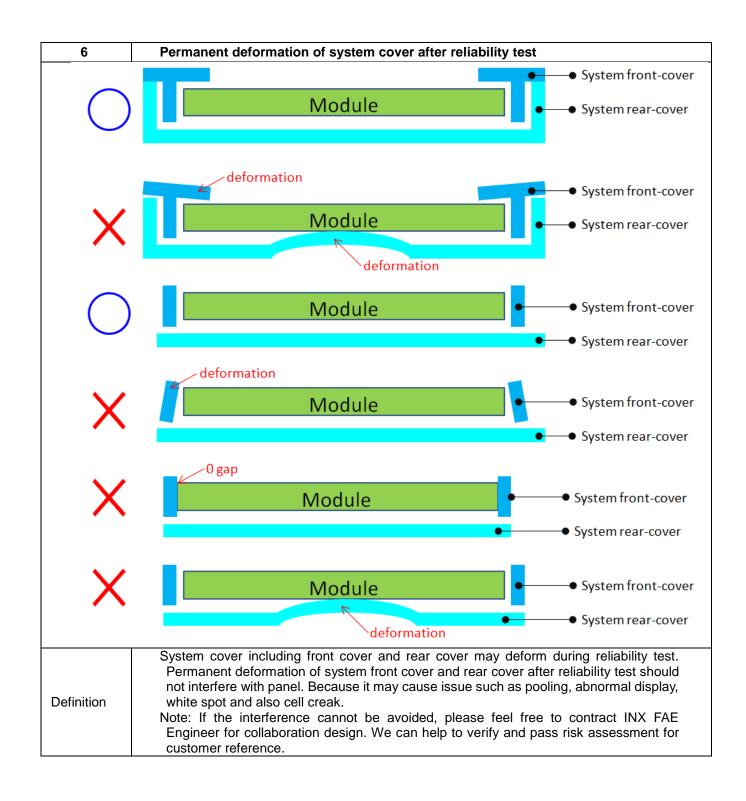


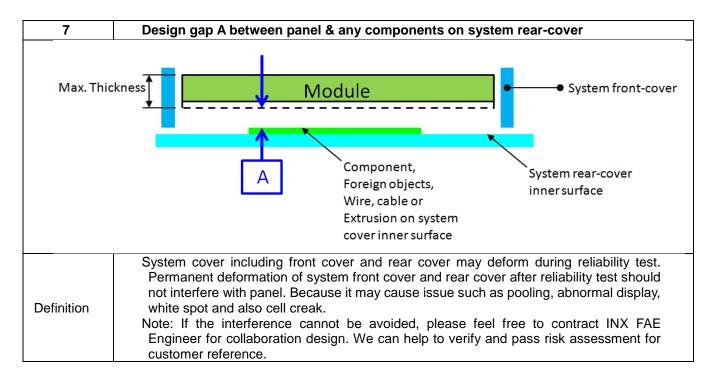

Version 2.0 24 October 2023 34 / 41

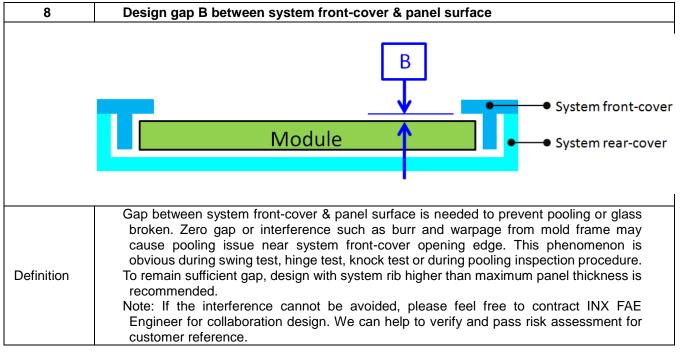

Appendix. SYSTEM COVER DESIGN NOTICE



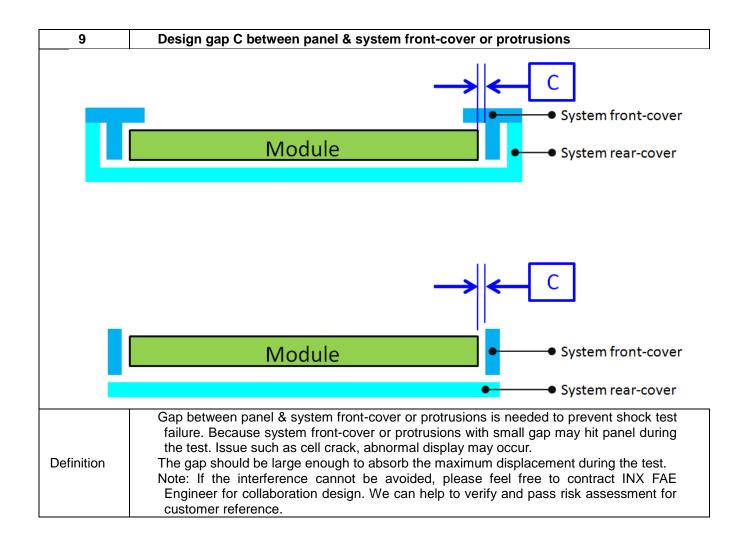


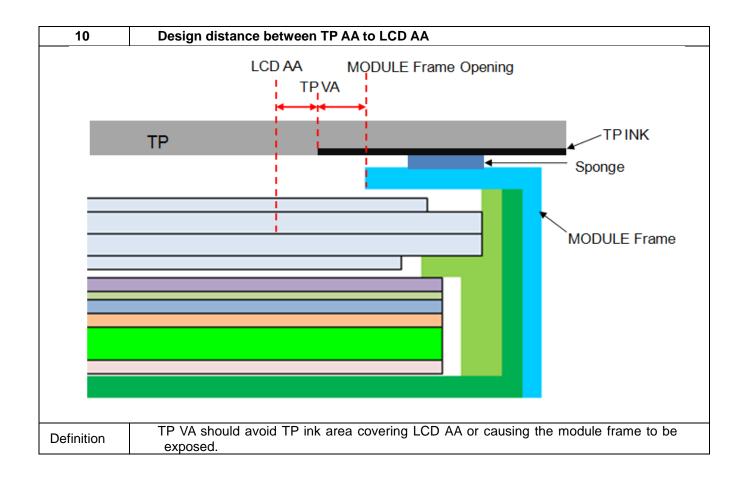


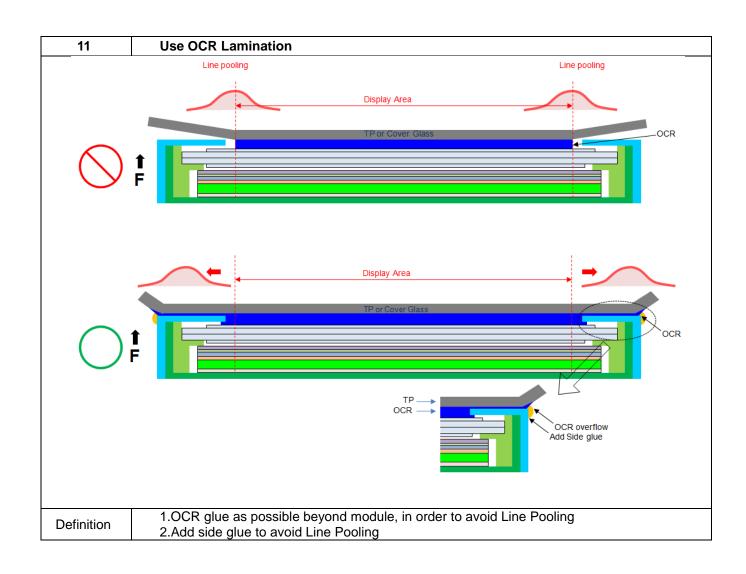




Version 2.0 24 October 2023 39 / 41




Version 2.0 24 October 2023 40 / 41



Version 2.0 24 October 2023 41 / 41

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

FORTEC Elektronik AG | Augsburger Straße 2b | 82110 Germering +49 89 894450-0 info@fortecag.de | www.fortecag.de

FORTEC

FORTEC Integrated GmbH | Augsburger Straße 2b | 82110 Germering +49 89 894363-0

 $\underline{\mathsf{info@fortec\text{-}integrated.de}} \hspace{0.1cm} | \hspace{0.1cm} \underline{\mathsf{www.fortec\text{-}integrated.de}}$

FORTEC

FORTEC Electronic Design and Solution Egypt SMLC | Linx Business Park Unit B318 | Smart Village | Giza Governorate info@fortec-integrated.de | www.fortec-integrated.de

FORTEC

CZECH REPUBLIC

FORTEC UNITED STATES

FORTEC Czech Republic s.r.o. | Přátelství 275 | 330 02 Dýšina +49 89 894363-0 info@fortec.cz www.fortec.cz

FORTEC SWITZERLAND

FORTEC Switzerland AG | Bahnhofstraße 3 | 5436 Würenlos +41 44 7446111

info@fortec.ch | www.fortec.ch

FORTEC

FORTEC Power GmbH | Lise-Meitner-Straße 3 | 64560 Riedstadt +49 6158 8285-0 weborder@fortec-power.de | www.fortec-power.de

Autronic Steuer- und Regeltechnik GmbH | Siemensstraße 17 74343 Sachsenheim +49 7147 24-0 vertrieb@autronic.de | www.autronic.de

FORTEC United States, Corp. | 87 Raynor Avenue Unit 1 | Ronkonkoma NY | 11779 | +1 631 5804360 info@fortec.us | www.fortec.us

FORTEC

FORTEC Technology UK Ltd. | Osprey House | 1 Osprey Court Hinchingbrooke Business Park | Huntingdon | Cambridgeshire | PE29 6FN +44 1480 411600

info@fortec.uk www.fortec.uk