

Datasheet

LG Display

LM315WR1-SSB2

HD-10-163

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

SPECIFICATION FOR APPROVAL

()	Prelim	inary	specification
()	Final s	specif	ication

Title	31.5" UHD TFT	31.5" UHD TET LCD			
BUYER	SUPPLIER	LG Display Co., Ltd.			
MODEL	*MODEL	LM315WR1			
	SUFFIX	SSB2			

^{*}When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE DATE
1	
1	
/	
lease return 1 copy for you	ur confirmation wit

APPROVED BY	SIGNATURI DATE
K.H. Hwang / G.Manager	42/
REVIEWED BY	
S.H. Lee / Manager [C]	4
Y.H. Hwang / Manager [M]	10
S.H. Han / Manager [O]	How
J.H. Lee / Manager [P]	0/250
PREPARED BY H.C. Jung / Engineer	At

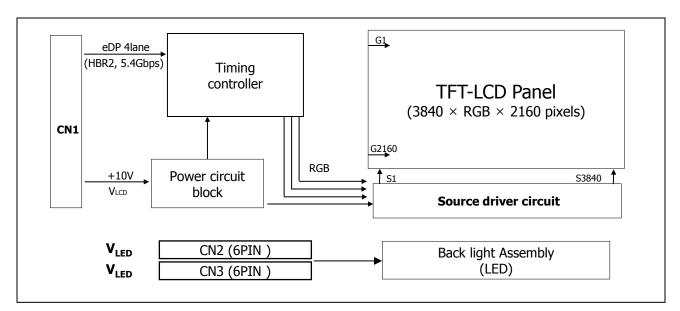
LG Display Co., Ltd

Contents

No	ITEM	Page
	Cover	1
	Contents	2
	Record of revisions	3
1	General description	5
2	Absolute maximum ratings	6
3	Electrical specifications	7
3-1	Electrical characteristics	7
3-2	Interface connections	10
3-3	Signal timing specifications	16
3-4	Signal timing waveforms	17
3-5	Color input data reference	18
3-6	Power sequence	19
3-7	V _{LCD} Power dip condition	20
4	Optical specifications	21
5	Mechanical characteristics	26
6	Reliability	29
7	International standards	30
7-1	Safety	30
7-2	Environment	30
8	Packing	31
8-1	Designation of lot mark	31
8-2	Packing form	32
9	Precautions	33

Record of revisions

Revision	Revision	D	Defens	Application		
No.	Date	Page	Before	After	Date	
0.1	Jan. 2. 2018	-	First Draft, Preliminary Specifications	-	-	
		5, 26	Update the weight spec			
		3, 20	Typ. : TBD g / Max. : TBD g	Typ. : (3,250g) / Max. : (3,420g)		
			Update the timing table	T		
0.2	Jan. 23. 2018	16	1979 Symbol 10.0 1.0	1711 Perul 10.5 14.0	Jan. 23. 2018	
0.3	Jan. 29.	21	Add the color gamut spec (sRGB Cove	erage)	Jan. 29.	
0.5	2018	21	-	Typ. 99% / Min. 95%	2018	
			Update the mechanical drawing (UDM	Position)		
0.4	Apr. 4. 2018	Apr. 4.	28 Apr. 4.	- Bacasa Paul	- SEAN VEW - Revera Paral	Apr. 4.
			Update LCM test result for operating F	2018		
		35, 36	35, 36	-	# Of through	
			Update the spec of color input data re	ference		
0.5	May. 2. 2018	18	Company Section Company Section Sectio	Column C	May. 2. 2018	
			Update the mechanical drawing	I		
0.6	May. 29. 2018	27, 28			May. 29. 2018	
			TO SERVICE AND ADDRESS OF THE PROPERTY OF THE	The second secon		


Record of revisions

1.0 3un. 27. 2018 20 20 20 20 20 3 20 3 20 3 20 3 20 3 20 3 20 3 20 3 20 3 3 20 20	Revision No.	Revision Date	Page	Before	After	Application Date
Typ. : 3,250g / Max. : 3,420g		5 25		Update the spec of LCM weight		
0.6 2018 7. When the LED power and the LCD VLCD are turned off simultaneously, the display may momentarily show abnormal screen			5, 25	Typ. : 3,250g / Max. : 3,420g	Typ. : 3,190g / Max. : 3,350g	
2018 20		May. 29.		Add the note of power sequence		May. 29.
	0.6		20	-	VLCD are turned off simultaneously, the display may momentarily show	
	1.0		-	Final Draft	T	
1 1 1 1						

1. General description

LM315WR1-SSB2 is a color active matrix liquid crystal display with a light emitting diode (WLED) backlight assembly without LED driver. The matrix employs a-Si thin film transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 31.5 inch diagonally measured active display area with UHD resolution.(3840 horizontal by 2160 vertical pixels array) Each pixel is divided into red, green and blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 10-bit gray scale signal for each dot, thus, presenting a palette of more than 1.07Billion colors. It has been designed to apply eDP(HBR2, 5.4Gbps) interface. It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.

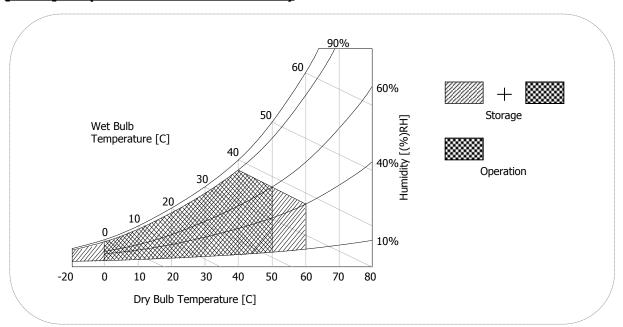
[FIG. 1] Block diagram

General features

Active screen size	31.5 inches(80.0051cm) (Aspect ratio 16:9)
Outline dimension	709.4(H) x 405.85(V) x 14.2 mm (Typ.)
Pixel pitch	0.18159(H)mm x 0.18159(V)mm
Pixel format	3840(H) x 2160(V) Pixels. RGB stripes arrangement
Color depth	1.07Billion colors (8bit + A-FRC)
Luminance (@White)	400 cd/m ² (Center 1 Point, Typ.)
Viewing angle(CR>10)	View angle free (R/L 178(Typ.), U/D 178(Typ.))
Power consumption	Total 36.9 Watt (8.5Watt @V _{LCD} , 28.4 Watt @Is=110mA)
Weight	3,190g (Typ.)
Display operating mode	Transmissive mode, normally black
Panel type	Reverse type
Surface treatment	Advanced Anti-glare treatment of the front polarizer (3H)

2. Absolute maximum ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.


Table 1. Absolute maximum ratings

Parameter	Symbol	Val	ues	Units	Notes	
rai ailietei	Syllibol	Min.	Max.	Oilles	Notes	
Power supply input voltage	V _{LCD}	-0.3	12.0	V _{DC}	At 25 ℃	
Operating temperature	T _{OP}	0	50	°C		
Storage temperature	T _{ST}	-20	60	°C	122	
Operating ambient humidity	H _{OP}	10	90	%RH	1,2,3	
Storage humidity	H _{ST}	10	90	%RH		
LCM surface temperature (Operation)	T _{Surface}	0	65	°C	1, 4	

Notes:

- 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max., and no condensation of water.
- 2. Maximum storage humidity is up to 40°C, 70% RH only for 4 corner light leakage mura.
- 3. Storage condition is guaranteed under packing condition
- 4. LCM surface temperature should be measured under the condition of V_{LCD} =10.0V, fv=60Hz, T_a =25 °C, no humidity and typical LED string current.
 - X. T_a = Ambient temperature

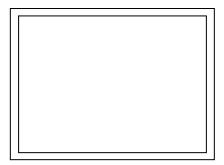
[FIG. 2] Temperature and relative humidity

3. Electrical specifications

3-1. Electrical characteristics

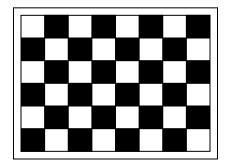
It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other input power for the LED/Backlight, is typically generated by a LED Driver. The LED Driver is an external unit to the LCDs.

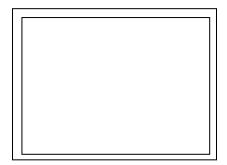
Table 2-1. Electrical characteristics


Davamatav	Creshal		Values	lluite.	Notes	
Parameter	Symbol	Min	Тур	Max	Units	Notes
MODULE:						
Power supply input voltage	V_{LCD}	9.5	10.0	10.5	V	4
Permissive power input ripple	V_{ripple}			400	mVp-p	1
Dower supply input surrent	I _{LCD} Typ.	-	0.85	1.06	Α	
Power supply input current	I _{LCD} Max.	-	1.12	1.40	Α	2
Dower consumption	Рс Тур.	-	8.5	10.6	Watt	2
Power consumption	Pc Max.	-	11.2	14.0	Watt	
Rush current	Irush	-		3	А	3

Notes:

- 1. Permissive power ripple should be measured under the condition of $V_{LCD}=10.0V$, $25^{\circ}C$,*fv=max. Refer to page 7 for the pattern and more information.
- 2. The specified current and power consumption can be measured under the V_{LCD} =10.0V, 25°C, f_{V} =60Hz and the pattern should be changed according to the typical or maximum power condition. The max. current can be measured only with the maximum power pattern. See the page 7 for details.
- 3. Maximum condition of inrush current : The duration of rush current is about 5ms and rising time of power input is 500us \pm 20%. (min.).
- 4. V_{LCD} level must be measured between two points on PCB of LCM [V_{LCD} (test point) ~ LCM Ground) (Test condition: maximum power pattern, 25°C, f_V =60Hz)
- * fv=frame frequency


• Permissive power input ripple (V_{LCD} = 10.0V, 25°C, fv (frame frequency)=Max. condition)


White pattern

For the exact ripple measurement, the condition of max. 20Mhz is recommended in the bandwidth configuration of oscilloscope.

• Power consumption ($V_{LCD} = 10V$, 25°C, fv (frame frequency=60Hz condition)

Typical power pattern

Maximum power pattern

[FIG. 3] Mosaic pattern & White pattern for power consumption measurement

Table 2-2. Electrical characteristics of LED bar in normal operating condition

Davameter	Values				llnite.	Notes	
Parameter	Symbol	Min.	Тур.	Max.	Units	Notes	
LED string current	Is	-	110	115	mA	1, 2	
LED string voltage	Vs	30.0	32.2	34.4	V	1, 3	
Power consumption	PBar	-	28.4	30.3	Watt	1, 2, 5	
LED life time	LED_LT	30,000	-	-	Hour	4	

Notes: The LED bar consists of 88 LED packages, 8 strings (parallel) x 11 packages (serial)

- 1. The specified values are for single LED bar.
- 2. The specified current is defined as the input current for single LED string with 100% duty cycle.
- 3. The specified voltage is the input LED string voltage at typical current 100% duty cycle.
- 4. The LED life time is defined as the time when the brightness of LED itself reach to the 50% of initial value under the conditions at Ta = $25 \pm 2^{\circ}$ C and typical LED string current.
- 5. The power consumption shown above does not include the loss of external LED driver. The typical power consumption is calculated as $P_{Bar} = V_s(Typ.) \times I_s(Typ.) \times No.$ of strings. The maximum power consumption is calculated as $P_{Bar} = V_s(Max.) \times I_s(Typ.) \times No.$ of strings.

3-2. Interface connections

3-2-1. LCD Module

- LCD Connector(CN1): GT05Q-30S-H10-MN (LSMtron), HD2S030HA1 (JAE), KN38B-30S-0.5H(HIROSE)

or Equivalent

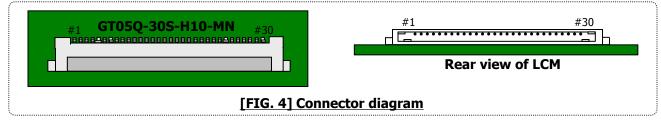
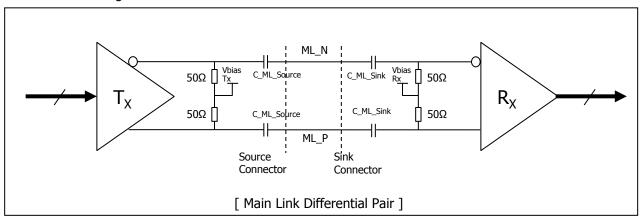

- Mating Connector: 20453-030T-## (Manufactured by I-PEX) or Equivalent

Table 3. Module connector (CN1) pin configration

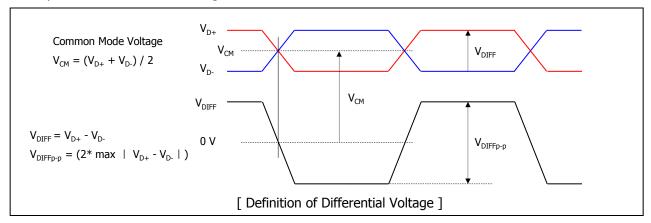
No	Symbol	Description	No	Symbol	Description
1	VLCD	Power Supply +10.0V	16	Lane0P	True Signal for Main Link 0
2	VLCD	Power Supply +10.0V	17	Lane0N	Component Signal for Main Link 0
3	VLCD	Power Supply +10.0V	18	GND	Ground
4	VLCD	Power Supply +10.0V	19	Lane1P	True Signal for Main Link 1
5	VLCD	Power Supply +10.0V	20	Lane1N	Component Signal for Main Link 1
6	NC	No connection	21	GND	Ground
7	GND	Ground	22	Lane2P	True Signal for Main Link 2
8	NC	No Connection(I2C serial interface for LCM)	23	Lane2N	Component Signal for Main Link 2
9	NC	No Connection(I2C serial interface for LCM)	24	GND	Ground
10	GND	Ground	25	Lane3P	True Signal for Main Link 3
11	HPD	Hot Plug Detect Signal	26	Lane3N	Component Signal for Main Link 3
12	GND	Ground	27	GND	Ground
13	AUX_CHN	Component Signal for Auxiliary Channel	28	BIST	L(GND): Black, H(3.3V): Rotational Pattern
14	AUX_CHP	True Signal for Auxiliary Channel	29	NC	No Connection
15	GND	Ground	30	GND	Ground

Notes:

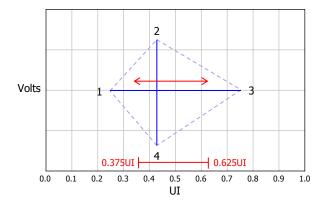

- 1. All GND(ground) pins should be connected together to the LCD module's metal frame.
- 2. All VLCD (input power) pins should be connected together.
- 3. BIST (Build In Self Test): If Pin No.28 is tied to "High(3.3V)", T-con generates Rotational Pattern. Time to stay at every pattern is about 2sec.

3-2-2. eDP Signal specifications

1. eDP Main link signal

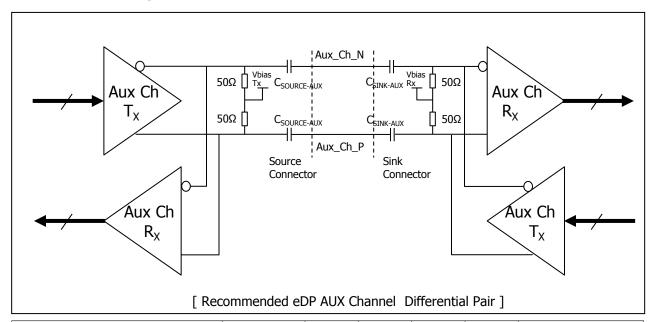

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval for high bit rate (5.4Gbps / lane)	UI_HBR2	ı	185	-	ps	
Link Clock Down Spreading	Amplitude	0	-	0.5	%	
Link Clock Down Spreading	Frequency	30		33	kHz	
Maximum output voltage level at Source side connector	V _{TX-DIFFp-p-Max}	-	-	1.38	V	Note 6)
Differential peak-to-peak voltage at Sink side connector	V _{RX-DIFFp-p}	0.09	-	-	V	Note 7)
EYE width at Sink side connector	T _{RX-EYE-CONN}	0.38	-	-	UI	Note 6,7)
Lane intra-pair skew	L _{Rx-SKEW-} INTRA_PAIR	-	-	50	ps	
AC Coupling Capacitor	C _{SOURCE} ML	75		200	nF	Source side

Note)


- 1. Termination resistor is typically integrated into the transmitter and receiver implementations.
- 2. In cabled embedded system, it is recommended the system designer ensure that EYE width and voltage are met at the sink side connector pins.
- 3. Mismatched common mode voltage will occur abnormal display.
- 4. All eDP electrical spec is measured at sink connector side.
- 5. eDP cable Impedance should be 100ohm \pm 5%.

Note6) Definition of Differential Voltage

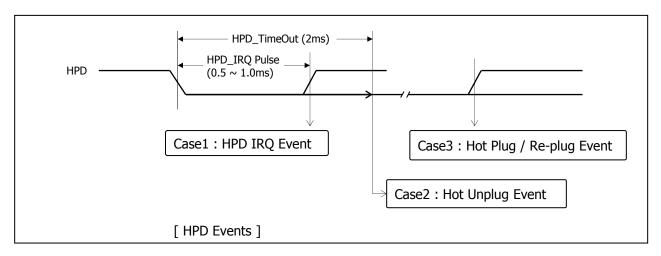
Note7) Main Link EYE Diagram



Doint	High Bit Rate 2 @ TP3 EQ	
Point	Time(UI)	Voltage(V)
1	Any UI location (x) where the eye width is open from x to $x+0.38UI$	0.000
2	Any passing UI location between 0.375UI-0.625UI	0.045
3	Point 1 + 0.38UI	0.000
4	Same as Point 2	-0.045

[EYE Mask Vertices at embedded DP Sink Connector Pins]

2. eDP AUX Channel signal


Parameter	Symbol	Min	Тур	Max	Unit	Notes
AUX Unit Interval	UI	0.4	-	0.6	us	
AUX Jitter at Tx IC Package Pins	_	-	-	0.04	UI	Equal to 24ns
AUX Jitter at Rx IC Package Pins	T _{jitter}	-	-	0.05	UI	Equal to 30ns
AUX Peak-to-peak voltage at Connector Pins of Receiving		0.32	-	1.36	V	
AUX Peak-to-peak voltage at Connector Pins of Transmitting	V _{AUX-DIFFp-p}	0.39	-	1.38	V	
AUX EYE width at Connector Pins of Tx and Rx		0.98	-	-	UI	
AUX AC Coupling Capacitor	C _{SOURCE-AUX}	75		200	nF	Source side

Note)

- 1. Termination resistor is typically integrated into the transmitter and receiver implementations.
- 2. $V_{AUX-DIFFp-p}=2*\mid V_{AUXP}-V_{AUXN}\mid$ 3. Termination resistor should be ± 50 ohm at source side to AUX level.
- 4. Mismatched common mode voltage will occur abnormal display.

3. eDP HDP Signal

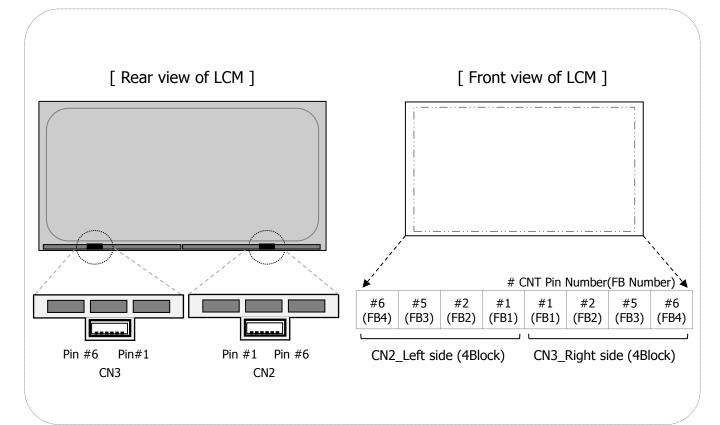
Parameter	Symbol	Min	Тур	Max	Unit	Notes
HPD Voltage		2.25	-	3.6	٧	Sink side Driving
Hot Plug Detection Threshold	HPD	2.0	-	-	٧	Course side Detecting
Hot Unplug Detection Threshold		-	-	0.8	٧	Source side Detecting
HPD_IRQ Pulse Width	HPD_IRQ	0.5	-	1.0	ms	
HPD_TimeOut		2.0	-	-	ms	HPD Unplug Event

Note)

- 1. HPD IRQ: Sink device wants to notify the Source device that Sink's status has changed so it toggles HPD line, forcing the Source device to read its Link / Sink Receiver DPCD field via the AUX-CH
- 2. HPD Unplug: The Sink device is no longer attached to the Source device and the Source device may then disable its Main Link as a power saving mode
- 3. Plug / Re-plug: The Sink device is now attached to the Source device, forcing the Source device to read its Receiver capabilities and Link / Sink status Receiver DPCD fields via the AUX-CH

3-2-3. Backlight connector pin configuration

Table 4. Backlight connector pin configuration(CN2, CN3)


The LED interface connector is a model BM06B-SHJS(HF)_Manufactured by JST or equivalent.

The mating connector is a SHJP-06V-S(HF), 10035HS-H06C(HF) or equivalent.

The pin configuration for the connector is shown in the table below.

Pin	Symbol	Pin-description (CN2)	Remark
#1	FB1	Channel 1 current feedback	
#2	FB2	Channel 2 current feedback	
#3	V LED	LED power supply (common anode)	Left side
#4	V LED	LED power supply (common anode)	in front view
#5	FB3	Channel 3 current feedback	
#6	FB4	Channel 4 current feedback	

Pin	Symbol	Pin-description (CN3)	Remark
#1	FB1	Channel 1 current feedback	
#2	FB2	Channel 2 current feedback	
#3	V LED	LED power supply (common anode)	Right side
#4	V LED	LED power supply (common anode)	in front view
#5	FB3	Channel 3 current feedback	
#6	FB4	Channel 4 current feedback	

[FIG. 5] Backlight connector view

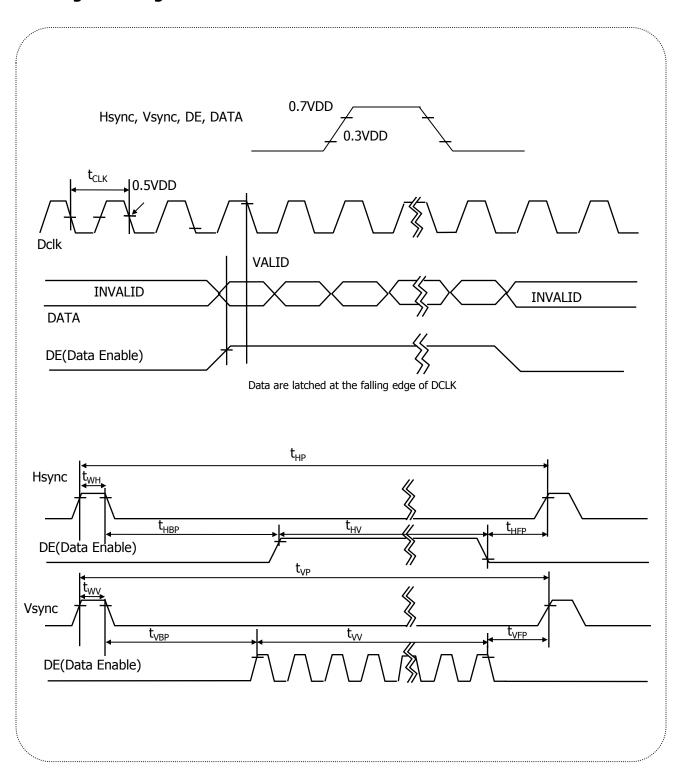
Ver. 1.0 Jun. 27. 2018 15 / 34

3-3. Signal timing specifications

This is signal timing requirement from the signal transmitter. All of the interface signal timing should satisfy the following specifications for its proper operation.

Table 5. Timing table

ITEM	Symbol		Min.	Тур.	Max.	Unit	Note
DCIL	Period	tCLK	1.82	1.875	1.93	ns	
DCLK	DCLK Frequency		518.25	533.25	548.25	MHz	
	Period	tHP	3968	4000	4040	tCLK	
	Horizontal Valid	tHV	3840	3840	3840	tCLK	
l laura a	Horizontal Blank	tHB	128	160	192		124
Hsync	Width	tWH	28	32	36	tCLK	1,3,4
	Horizontal Back Porch	tHBP	52	80	108		
	Horizontal Front Porch	tHFP	48	48	48		
	Period	tVP	2220	2222	2268	tHP	
	Vertical Valid	tVV	2160	2160	2160	tHP	
	Vertical Blank	tVB	60	62	108	tHP	
Vsync	Frequency	fV	58.2	59.997	61.68	Hz	2,4
	Width	tWV	5	5	5	tHP	
	Vertical Back Porch	tVBP	52	54	100		
	Vertical Front Porch	tVFP	3	3	3		


Notes:

- 1. The value of Hsync period, Hsync width and Hsync valid should be even number times of tCLK.

 If the value is odd number times of tCLK, it can make asynchronous signal timing and cause abnormal display.
- 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 3. The value of Hsync Period, Hsync Width, and Horizontal Back Porch should be divided by 4 without a remainder.
- 4. The polarity of Hsync, Vsync is not restricted.

3-4. Signal timing waveforms

3-5. Color input data reference

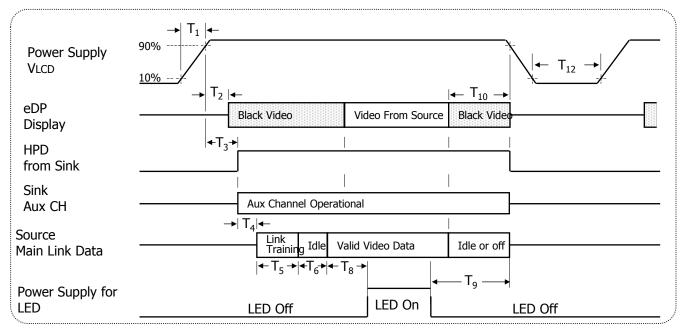

The brightness of each primary color(red,green,blue) is based on the 10-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

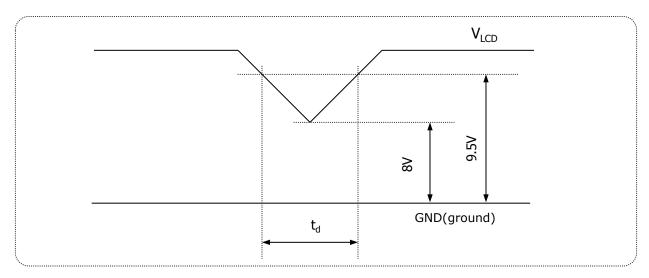
Table 6. Color data reference

											In	pι	ıt (Co	loı	r D	ata	1														
	Color					RE	D									G	RE	Eľ	1								BL	UE				
		MSE	3							L	.SB	MS	В									LSB	MS	В							-	LSB
		R9	R8	R7	R6 I	R5 F	84 F	R3 R	2 F	R1	R0	G9	G8	3 G	7 G	66 (G5	G4	G3	G2	G1	. G0	B9	9 B8	B 7	⁷ B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0 (O 	0	0	0	0	0) (0	0	0	0	0	0	0	0			0	0	0	0	0	0	0
	Red (1023)		.1	1	1	1	1	1 :	1	1	1	0	0) (0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0 (0	0	0	1	1	. 1		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue (1023)	0	0	0	0	0	0	0 (0	0	0	0	0	0) (0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0 (0	0	0	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0) (0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	0	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (001)	0	0	0	0	0	0	0	0	0	1	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED				• • •			• • •	• • •	• • •	•		ļ		• • •						• • •	• • •				•		٠		• • •		• • • •	
	RED (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	0	0	0	0	0	0	0 (0	0	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)	0	0	0	0	0	0	0 (O	0	0	0	0	0		0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
GREEN							• • •			•		l						•			• • •				• • •		٠					
	GREEN (1022)	0	0	0	0	0	0	0 ()	0	0	1	1	1		1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	GREEN (1023)	0	0	0	0	0	0	0 (O	0	0	1	1	1		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	BLUE (000)	0	0	0	0	0	0	0 (0	0	0	0	0	C) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)	0	0	0	0	0	0	0 (O	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE			• • • •							• •	• • • •	ļ	• • •				• • •						· · · ·		• • •		•			• • • •		
	BLUE (1022)	0	0	0	0	0	0	0 (O	 0	0	0	0			0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	BLUE (1023)	0	0	0	0	0	0	0 (O	0	0	0	0	0) (0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

3-6. Power sequence

Table 7. Power sequence table

Timing	Required	Lin	nits	Units	Notes
Timing	Ву	Min	Max	UTILS	notes
T_1	Source	0.5	10	ms	-
T ₂	Sink	10	200	ms	ı
T ₃	Sink	15	200	ms	ı
T ₄	Source	ı	ı	ms	Note 5)
T ₅	Source	ı	ı	ms	Note 5)
T ₆	Source	1	100	ms	Note 6)
T ₈	Source	200	1	ms	-
T ₉	Source	200	-	ms	Note 4)


Timir	. ~	Required	Lim	its	Uni	Notos		
Timir	ıy	Ву	Min	Max	ts	Notes		
T ₁₀		Source	0	500	ms	-		
T ₁₂		Source	1000	-	ms	-		

Note:

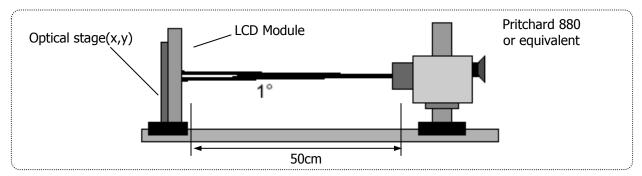
- 1. Power sequence should be kept all the time including below cases for normal operation.
 - -.AC/DC Power On/Off
 - -. Mode change (resolution, frequency, timing, sleep mode, color depth change, etc.)
 The violation of power sequence can cause a significant trouble in display and reliability.
- 2. Please avoid floating state of interface signal during signal invalid period.
- 3. When the interface signal is invalid, be sure to pull down the VLCD.(0V)
- 4. Please turn off the power supply for LED when the level of VLCD changes to prevent noise issue.
- 5. Link training duration is dependent on the customer's system.
- 6. It includes Source Frame Synchronization time. Source Frame Synchronization: Time to prepare before Tx(Source) sends valid data(Invalid period)
- 7. When the LED power and the LCD VLCD are turned off simultaneously, the display may momentarily show abnormal screen

3-7. V_{LCD} Power dip condition

[FIG. 6] Power dip condition

For proper operation, stable power supply of V_{LCD} is necessary and power dip is allowed only in below condition. Except this condition, power on/off should follow power sequence specification in previous page exactly.

1) Dip condition


$$8V \le V_{LCD} < 9.5V$$
, $t_d \le 20ms$

4. Optical specifications

Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at $25\pm2^{\circ}$ C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 ° and aperture 1 degree.

FIG. 7 presents additional information concerning the measurement equipment and method.

[FIG. 7] Optical characteristic measurement equipment and method

Table 8. Optical characteristics (Ta=25 °C, V_{LCD} =10.0V, f_V =60Hz Dclk=533.25MHz, I_S =110mA)

		Completel		Values		112	Natar
Parame	eter	Symbol	Min.	Тур.	Max.	Units	Notes
Contrast Ratio		CR	910	1300	-		1
Surface luminance, w	vhite	L _{WH}	320	400	-	cd/m ²	2
Luminance variation		δ_{WHITE}	75	-	-	%	3
Response time	Gray To Gray	T_{GTG_AVR}	-	14	25	ms	4
Color gamut (CIE193	1)	sRGB	95	99	-	%	
	Red	Rx		0.674			
	Reu	Ry		0.314			
	Croon	Gx		0.277			
Color coordinates [CIE1931]	Green	Gy	Тур.	0.678	Тур.		
(By PR650)	Divo	Bx	-0.03	0.154	+0.03		
	Blue	Ву		0.053			
	VA/In:the	Wx		0.313			
	White	Wy		0.329			
Viewing angle	Horizontal	θ_{H}	170	178	-	Daguas	Г
(CR>10, General)	Vertical	$\theta_{\sf V}$	170	178	-	Degree	5
Gray Scale	·	-		2.2			6

4-1. Characteristics of Peak luminance

Table 9-1. Absolute maximum value of LED bar and peak luminance

Parameter	Symbol	Values	Unit	Notes
LED string current	Is	160	mA	
Peak luminance	Lp	550	nit	a,b,c

Notes) a. LED string voltage at maximum current with 100% duty cycle is 33.4 ± 2.2 V at Ta = 25 ± 2 °C.

- b. Table 9-1 is reference data only for HDR Function usage, refer to the appendix of LCM temperature at peak current.
- c. Peak Luminance 550nit is achieved at 160mA, while the specifications for guarantee remains under the normal operating condition specified in Table 2-2. Specifications and condition for evaluation test and mass production shall be applied with conditions specified in Table 2-2.

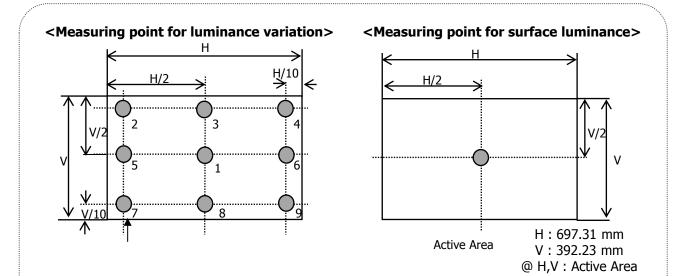
23 / 34

Product specification

Notes:

Ver. 1.0

1. Contrast Ratio(CR) is defined mathematically as: (By PR880)


$$Contrast Ratio = \frac{Surface luminance with all white pixels}{Surface luminance with all black pixels}$$

It is measured at center point(Location P1)

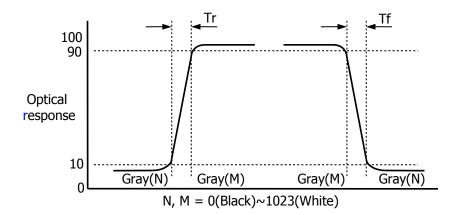
- 2. Surface luminance(LwH)is luminance value at Center 1 point(P1) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG.7 (By PR880)
- 3. The variation in surface luminance , δ WHITE is defined as : (By PR880)

$$\delta_{\textit{WHITE}} = \frac{M \, \text{inimum}(L_{\text{P1}}, L_{\text{P2}}, \dots, L_{\text{P9}})}{M \, \text{aximum} \, (L_{\text{P1}}, L_{\text{P2}}, \dots, L_{\text{P9}})} \times 100$$

Where L1 to L9 are the luminance with all pixels displaying white at 9 locations. For more information see FIG.8

[FIG.8] Measure point for luminance

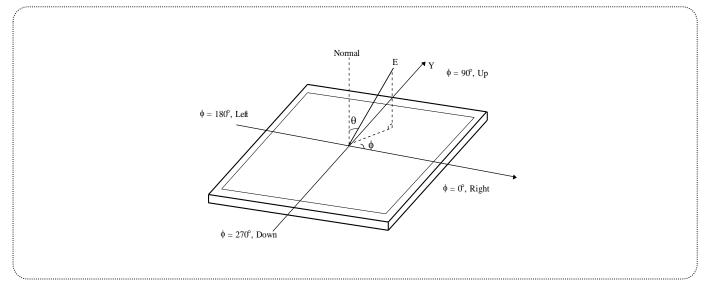
Jun. 27, 2018



- 4. The Gray To Gray response time is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray".
 - Gray step: 5 Step
 - TGTG_AVR is the total average time at rising time and falling time for "Gray To Gray ".
 - By RD80S

Table 9. GTG Gray table

Curve To Co	Correct To Correct		Rising time						
Gray To Gi	гау	G1023	G767	G511	G255	G0			
Falling time	G1023								
	G767								
	G511								
	G255								
	G0								


Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

[FIG. 9] Response Time

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG.10 (By PR880)

[FIG. 10] Viewing angle

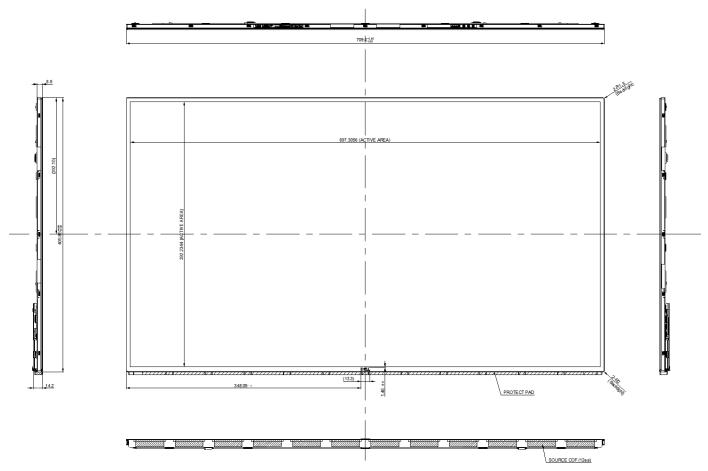
6. Gamma Value is approximately 2.2. For more information see Table 11.

Table 10. Gray Scale Specification

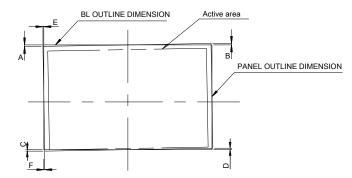
Gray Level	Relative Luminance [%] (Typ.)
0	0.11
127	1.08
255	4.72
383	11.49
511	21.66
639	35.45
767	53.00
895	74.48
1023	100

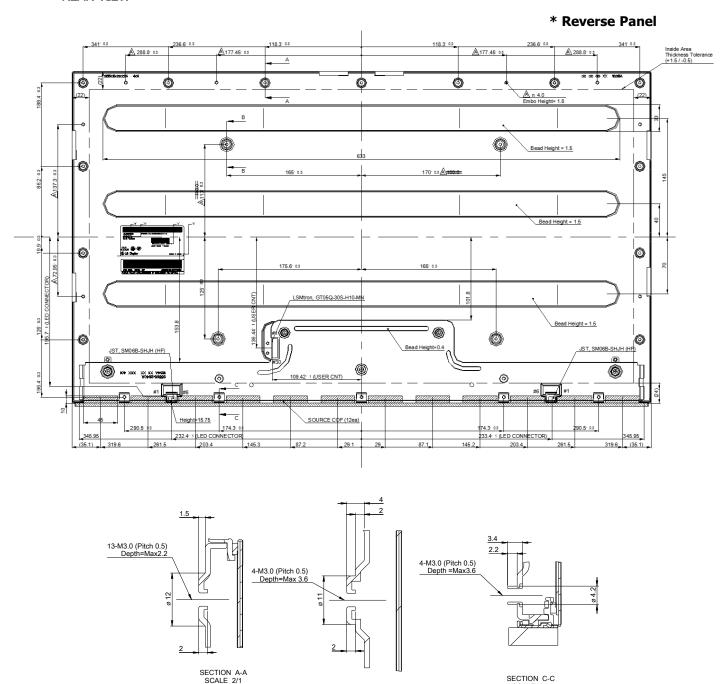
5. Mechanical characteristics

The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.


	Horizontal	709.40 mm		
Outline dimension	Vertical	405.85 mm		
	Depth	14.20 mm		
Bezel area	Horizontal	-		
Dezei died	Vertical	-		
Active display area	Horizontal	697.31 mm		
Active display area	Vertical	392.23 mm		
Weight	Typ. : 3,190g, Max. : 3,350g			
Surface Treatment	Advanced Anti-glare treatment of the front polarizer (3H)			

Notes: Please refer to a mechanic drawing in terms of tolerance at the next page.


Outline dimensions (horizontal, vertical and outside depth) are measured by using vernier calipers. The inside depth dimensions are measured by using height gauge, when LCM is put face down onto a flat surface.


Notes 1. I/F Connector specification: LSMtron, GT05Q-30S-H10-MN or Equivalent 2. LED connector specification: SM06B-SHJH (HF) (Manufactured by JST) or Equivalent 3. Torque of user hole: 3.0~4.0kgf.cm 4. Tilt and partial disposition tolerance of display area as following (1) Y-direction a. Upper side: $-0.45 \le A \le 0.45$, $-0.45 \le B \le 0.45$ b. Lower side: $-0.45 \le C \le 0.6$, $-0.45 \le D \le 0.6$ (2) X-direction: $-0.45 \le E \le 0.45$, $-0.45 \le F \le 0.45$

- 5. Unspecified tolerance is ± 0.5
- The LCM warp(warpage) is less than 1.0 on the surface plate
 The COF area is weak & sensitive, so please don't press the COF area
 Undefined height should follow the 3D Modeling data
 Protect Pad should not be removed unless system assembling

<REAR VIEW>

LGD Highly recommendation:

As The IPS panel is sensitive & slim, please recommend the metal frame of the system supports the panel by the double side-mount.

SECTION B-B SCALE 2/1

SECTION C-C

6. Reliability

Environment test condition

No	Test Item	Condition
1	High temperature storage test	Ta= 60°C 240h
2	Low temperature storage test	Ta= -20°C 240h
3	High temperature operation test	Ta= 50°C 50%RH 240h
4	Low temperature operation test	Ta= 0°C 240h
5	Humidity condition Operation	Ta= 40 °C ,90%RH
6	Altitude operating storage / shipment	0 - 16,400 feet (5,000m) 0 - 40,000 feet (12,192m)
7	Maximum Storage Humidity for 4 corner light leakage Mura.	Max 70%RH , Ta=40℃

Note 1. Result Evaluation Criteria:

TFT-LCD panels test should take place after cooling enough at room temperature. In the standard condition, there should be no particular problems that may affect the display function.

※ . T_a= Ambient Temperature

7. International standards

7-1. Safety

- a) UL 60950-1, Underwriters Laboratories Inc.
 Information Technology Equipment Safety Part 1 : General Requirements.
- b) CAN/CSA-C22.2 No. 60950-1-07, Canadian Standards Association. Information Technology Equipment - Safety - Part 1 : General Requirements.
- c) EN 60950-1, European Committee for Electrotechnical Standardization (CENELEC). Information Technology Equipment Safety Part 1 : General Requirements.
- d) IEC 60950-1, The International Electrotechnical Commission (IEC). Information Technology Equipment - Safety - Part 1 : General Requirements

7-2. Environment

a) RoHS, Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011

8. Packing

8-1. Designation of lot mark

a) Lot mark

Α	В	С	D	Е	F	G	Н	I	J	K	L	М
---	---	---	---	---	---	---	---	---	---	---	---	---

A,B,C : SIZE(INCH) D : YEAR

E: MONTH $F \sim M$: SERIAL NO.

Note

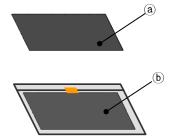
1. YEAR

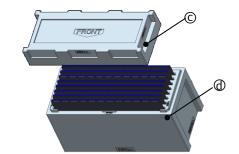
	Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ſ	Mark	Α	В	С	D	Е	F	G	Н	J	K

2. MONTH

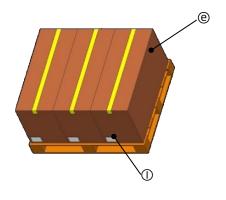
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

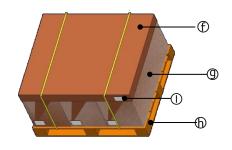
b) Location of lot mark


Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.


8-2. Packing form

a) Package quantity in one packing: 8 ea
Package quantity in one Pallet: 24 ea
b) Packing Size: 814mm X 358 mm X 509 mm
C) Pallet Ass'y Size: 1140 mm X 870 mm X 652 mm




2.

3.

4.

No.	Description	Material	
(a)	LCM	-	
(b)	AL-Bag	AL	
©	Packing, Top	EPS	
(d)	Packing, Bottom	EPS	
е	Box	Paper(SW)	
f	Angle Cover	Paper(SW)	
9	Wrap	LDPE	
h	Pallet	Plywood	
①	Label	YUPO	

9. Precautions

Please pay attention to the followings when you use this TFT LCD module.

9-1. Mounting precautions

- (1) You must mount a module using holes arranged in rear side.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.

 Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. Operating precautions

- (1) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (2) Brightness depends on the temperature. (In higher temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (3) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (4) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (5) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (6) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (7) A screw which is fastened up the steels should be a machine screw. (If not, it causes metallic foreign material and deal LCM a fatal blow)
- (8) Please do not set LCD on its edge.
- (9) When LCMs are used for public display, defects such as Yogore & image sticking can not be guaranteed.
- (10) LCM cannot support "Interlaced scan method"
- (11) When this reverse model is used as a forward-type model (PCB on top side), LGD can not guarantee any defects of LCM.
- (12) Please conduct image sticking test after 2-hour aging with Rolling pattern and normal temperature. (25~40 $^{\circ}$ C)

9-3. Electrostatic discharge control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions for strong light and hazardous materials exposure

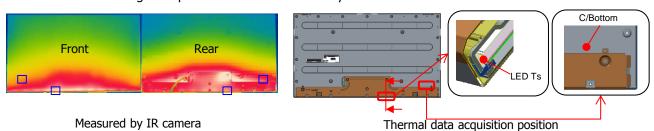
Strong light exposure causes degradation of polarizer and color filter.

The LCM should be avoided direct contact with Hazardous materials such as sulfur, acetic acid, chlorine, etc. These materials may cause chemical reaction such as sulfurization, corrosion, discoloration, etc.

9-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.


9-6. Handling precautions for protection film

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

APPENDIX

- LCM test result for operating HDR function
 - 1) It is recommended that thermal sensor in system should be placed on the surface of C/Bottom near the LED with high temperature when measured by IR camera.

2) Measurement of temperature by time. When the temperature is over 63.9 °C on C/Bottom, defects are founded due to thermal effect.

Table 1 : Temperature data at typical luminance(110mA), ambient temperature(50 ℃)

110mA (Typ.)	Measure Point Temp. (Ambi. 50℃)					
Time(min.)	C/Bottom(°C)	LED Ts(°C)	LED Ts - C/Bottom(°C)			
30	62.1	76.3	12.2			
60	63.4	78.0	12.6			
90	63.5	78.3	12.8			
120	63.9	78.4	12.5			

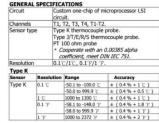
Table 2: Temperature data at 500nit luminance(145mA), ambient temperature(25°C)

145mA	Measure	Point Temp. (Am	nbi. 25℃)	R	emark
Time(sec)	C/Bottom(℃)	LED Ts(℃)	LED Ts - C/Bottom(℃)	Interval	Current
Base	41.1	56.3	15.2	120min	110mA(Typ.)
30	41.7	59.4	17.7		
60	41.9	60.0	18.1		
90	42.2	60.5	18.3	O Emin	
120	42.4	60.7	18.3	0.5min	
150	42.6	61.0	18.4		
180	42.7	61.2	18.5		
240	42.9	61.5	18.6		
300	43.2	61.9	18.7		
360	43.5	62.1	18.6		145mA
420	43.7	62.4	18.7	1min	
480	43.9	62.6	18.7		
540	44.0	62.8	18.8		
600	44.2	63.0	18.8		
900	44.7	63.5	18.8		
1200	45.1	63.8	18.7	Emin	
1500	45.4	64.2	18.8	5min	
1800	45.5	64.4	18.9		

APPENDIX

■ LCM test result for operating HDR function

Table 3: Temperature data at peak luminance(160mA), ambient temperature(25 ℃)


160mA (Peak)	Measu	re Point Temp. (Am	bi. 25℃)	R	emark
Time(sec)	C/Bottom(℃)	LED Ts(℃)	LED Ts - C/Bottom(℃)	Interval	Current
Base	41.1	56.3	15.2	120min	110mA(Typ.)
30	41.9	61.4	19.5		
60	42.0	62.3	20.3		
90	42.3	62.9	20.6	0.5min	
120	42.7	63.3	20.6	0.511111	
150	43.0	63.6	20.6		
180	43.1	64.0	20.9		
240	43.6	64.5	20.9		
300	44.0	64.9	20.9		
360	44.2	65.2	21.0		160mA(Peak.)
420	44.6	65.6	21.0	1min	
480	44.8	65.8	21.0		
540	45.0	66.1	21.1		
600	45.2	66.3	21.1		
900	46.3	67.6	21.3		
1200	46.5	67.9	21.4	5min	
1500	46.5	68.0	21.5	וווווונ	
1800	46.6	68.2	21.6		

3) The temperature data of the LCM was measured by using a contact thermocouple (see attached Fig).

LED Ts C/Bottom Temperature Meter (Lutron TM-947SD / 4ch)

Luminance(nit)	LED String Current(mA)	LED String Voltage(V) (Tolerance : \pm 2.2V)
400	110	32.2
450	130	32.7
500	145	33.0
550	160	33.4

Ver. 1.0 Jun. 27. 2018 36 / 34

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Germany

FORTEC Elektronik AG

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894450-0
E-Mail: info@fortecag.de
Internet: www.fortecag.de

Fortec Group Members

Austria

Distec GmbH Office Vienna

Nuschinggasse 12 1230 Wien

Phone: +43 1 8673492-0
E-Mail: info@distec.de
Internet: www.distec.de

Germany

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894363-0
E-Mail: info@distec.de
Internet: www.distec.de

Switzerland

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

 Phone:
 +41 44 7446111

 E-Mail:
 info@altrac.ch

 Internet:
 www.altrac.ch

United Kingdom

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600

E-Mail: info@displaytechnology.co.uk
Internet: www.displaytechnology.co.uk

USA

Apollo Display Technologies, Corp.

87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: +1 631 5804360
E-Mail: info@apollodisplays.com
Internet: www.apollodisplays.com