

1/12

Win CE Integrators Guide

Software delivery

In this environment, UPDD is supplied as a number of separate components. Software sent

via email will be held in the file ZIP file TBUPDDCE.ZIP. This avoids the rejection by many

mail servers of .exe files. Touch-Base utilises virus detection software on all of our systems

but recipients of the software should pass the files through their own virus checking software

before proceeding with installation.

 As of October 2006 we are only shipping UPDD CE V4 unless otherwise requested to

supply V3 and these note refer only to the V4 driver.

Overview

For OEMs requiring a touch screen, or other pointer interface on
Windows CE devices, the Touch-Base Universal Pointer Device Driver
suite of software includes a Windows CE 2.xx, 3.x, 4.x/.NET, 5,x and
6.x embedded driver. This driver utilises the same code base as the
Windows NT/9x/2K/XP UPDD product and so has all facilities found in
UPDD on those systems, except for minor differences to accommodate
variance in the Windows CE implementation. The UPDD application
program interface is supported on Windows CE allowing 3rd party
utilities to be developed.

Hardware Interfaces

Serial should work in all target platforms.

PS/2 has been tested in X86 only.

USB have been tested on X86, Strongarm (Intel XScale PXA-255) and MIPS platforms. For

other processors we would need to be supplied a target system to modify the UPDD USB

interface to work with the processor.

Other interfaces such as ISA etc could be added if required.

2/12

See important Port Interface issues below.

Processor support

The driver has been tested with X86, StrongArm and MIPS processors running CE 3.0 .NET

4.1, 4.2, 5.0 and 6.0. Our CE.NET driver has been built in a CE.NET 4.2 development

environment. We can build drivers for other processors, as supported by the Microsoft CE

Platform Builder, on request. The CE 5.0 and 6.0 drivers are incompatible with previous

versions of Windows CE so the appropriate driver for your target platform should be used.

At the time of writing, the processors supported by Win CE 2.x/3.x/4.x (Net)/5.x/6.x are:

• MIPS

• StrongArm (also supports ARM processors)

• Power PC (Win CE 3.0/2.xx only)

• Hitachi SH3 (CE 4.x and earlier) / SH4

• x86

A complete list of supported hardware can be found at:

http://msdn.microsoft.com/en-us/embedded/aa714536.aspx

 Any processor can be supported as long as a Board Support Package is available for the

target processor.

Read

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wcehardware5/html/wce50c

onSupportedBoardSupportPackages.asp for more information on BSP’s

 Target hardware may have to be supplied for testing if any problems are experienced with

the driver.

3/12

Embedding UPDD for Win CE

It is assumed that the developer is using Platform Builder 3.0 or greater
and has created a Win CE image for the target hardware. This image
should be created with the MAXALL configuration under CE 3.0 or an
appropriate platform configuration under CE.NET.

To embed UPDD in a Windows CE image follow the following steps.

1. Copy the files (tbcalib.exe, tbupddce.dll, tbupddceusb.dll (if
using a USB touch controller) and tbcalibdll.dll (if it exists) from
the supplied zip file to the project folder in which your project files
are stored.

2. Edit the configuration file project.bib, adding the following line in
the MODULES section:
tbupddce.dll $(_FLATRELEASEDIR)¥tbupddce.dll NK SH or NK
SK for CE 6.0

3. If USB support is required edit the configuration file project.bib,
adding the following line in the MODULES section:
tbupddceusb.dll $(_FLATRELEASEDIR)¥tbupddceusb.dll NK SH
or NK SK for CE 6.0

4. If manual calibration facilities are required, edit the
configuration file project.bib, adding the following line in the
MODULES section:
tbcalib.exe $(_FLATRELEASEDIR)¥tbcalib.exe NK
tbcalibdll.dll $(_FLATRELEASEDIR)¥tbcalibdll.dll NK (if using CE
6.0)

5. Edit the configuration file project.reg, adding the contents of the
supplied file tbupddce.reg and any other .reg files supplied as
part of the UPDD CE package.

6. If USB support is required edit the configuration file project.reg,
manually adding the following entries:
[HKEY_LOCAL_MACHINE¥Drivers¥USB¥LoadClients¥VID_PID¥D
efault¥Default¥Tbupddceusb]

4/12

"DLL"="Tbupddceusb.dll"
"Order"=dword:1
"Index"=dword:1
"Prefix"="USB"
with the VID and PID tokens being replaced with the appropriate
values in base 10 (decimal). The VID and PID values can be found
in the supplied tbupddce.reg in hexadecimal format.

“Product Id”=dword:0000HHHH

“Vendor Id”=dword:0000HHHH

Important note 1 - The VID and PID values MUST match the
VID and PID of the controller in use. If the supplied files do not
match the controllers VID and PID, manually edit the values to
match. If necessary, we can supply a Win 2000 utility to display
the VID and PID when the controller is plugged in. e.g. Controller
has hex VID = 1234 and PID = 11 values. Hex 1234 = decimal
4660 and Hex 11 = decimal 17.

Based on the above controller the settings would be as follows:

project.reg

[HKEY_LOCAL_MACHINE¥Drivers¥USB¥LoadClients¥4660_17¥
Default¥Default¥Tbupddceusb]

tbupddce.reg

“Product Id”=dword:00000011

“Vendor Id”=dword:00001234

7. If EEPROM calibration data retrieval is required configure
EEPROM retrieval to be invoked at startup. See EEPROM notes
below.

8. Make any required software changes to the system components.
See “Port interface issues” below.

9. Rebuild the image using the Platform Builder.

5/12

Calibration issues

The touch screen interface requires that calibration data be used to map screen touches to

the corresponding Windows display area. This data is held in the registry or the touch

controller’s EEprom. UPDD for Windows CE supports EEPROM based calibration storage

where the device itself has the appropriate support and where support has been added in

UPDD. Not all EEprom enabled controllers are supported by UPDD for EEprom calibration

storage as support has been added on a per requirement basis. Should you require EEprom

support, please contact Touch-Base to discuss further. Unless EEprom calibration is

preconfigured in the supplied UPDD CE driver, calibration storage will be in the registry.

If calibration data id held in the registry and the registry is not held in non volatile memory

then the registry is reset to its default values whenever the device is reset. This raises some

calibration issues that must be considered, these are especially relevant to x86

implementations where the device is reset upon suspend or power off.

UPDD calibration information can be determined in one of 3 ways:

Auto-calibration. The calibration information is calculated based on the maximum

theoretical range of values (from the number of bits in the touch data packet) assuming that

the available touch area is exactly the same size as the visible desktop area.

Pre-calibration. The calibration data is determined for a device – or class of device, and

stored in the embedded configuration.

Manual Calibration. The user executes the calibration program and touches a series of

displayed points on the screen. Data recorded in this way may be lost when the device is

reset (if the registry is not held in persistent memory) unless the data is stored in the touch

controller’s EEPROM. An OEM using manual calibration, where the calibration data is lost

over a reboot, needs to decide on a strategy for initiating the manual calibration. E.g.

executing the calibration program at start-up, or placing an icon on the desktop. These and

other options are implemented via the platform configuration.

6/12

Calibration Settings

The supplied registry settings will usually be set to indicate auto-calibration. A CE

image developer might wish to alter these default settings, for example to provide a

pre-calibrated device. This is achieved by changing the settings copied to project.reg.

The settings that affect calibration are stored under:

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\TBUPDD\Parameters\{…}\1 - Where {…} is a

GUID that identifies the package.

The specific values used are: -

Number Of Calibration Points

RefX0, RefX1, RefY0, RefY1 *

CalX0, CalX1, CalY0, CalY1*

InvertX, InvertY, SwapXY

*If “Number Of Calibration Points” is greater than 2 then there will be

correspondingly more of these values.

The above values may be changed in the following ways.

• To force auto-calibration

Number of Calibration Points=2

CalX0=CalX1=CalY0=CalY1=0

InvertX,InvertY,SwapXY=? (These values will have to be determined by

experiment for a specific device. The valid values are 0 and 1 (for true /

false)). Tip – running the calibration program with 3 or more calibration points will

automatically set these values which can then be noted in the project.reg file.

7/12

• To define pre-calibration data

The easiest way to determine the pre-calibration data is to run the calibration

program on the device and perform a manual calibration. The calibration values,

detailed above, are noted from the registry on the target device and manually

entered in to project.reg. NB when executing tbcalib.exe the mode of calibration is

taken from a different registry location, see “manual calibration” below.

• To prepare for manual calibration:

A CE image developer might wish to alter aspects of the manual calibration, such

as the number of points or the location of the points. In doing this it is important

to bear in mind that the values outlined above are used for the active data (i.e. the

previous calibration), and the data used for the next manual calibration are

located at: -

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\TBUPDD\Parameters\{guid}\1\Calibration

Styles\0

• Determining calibration reference points:

If defining pre-calibration data, or preparing for a manual calibration with a

non-default number of points, the reference values must be set. The reference

values represent the location of the calibration points based on a grid 0-65535 in

the x and y planes, with the origin at the top left. So for a three-point calibration

with points

At top left middle and bottom right the values would be: -

RefX0=0

RefY0=0

RefX1=32768

RefY1=32768

RefX2=65535

RefY2=65535

8/12

• EEPROM storage

If the controller in use supports EEPROM storage and it is supported by UPDD

and EEprom calibration storage is required then registry entry

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\TBUPDD\Parameters\{guid}\1\EEPROM

Calibration

should be enabled.

Important note: If calibration data is stored in the controller then it is necessary to

automatically call the calibration program at system startup to retrieve the

calibration data passing the eeprom retrieval parameter, i.e. tbcalib eeprom. See

Calibration documentation for further details.

Calibration beeps

 A system beep will be made as each calibration point is accepted if the calibration beep

setting is enabled

 HKEY_LOCAL_MACHINE¥Drivers¥BuiltIn¥TBUPDD¥Parameters¥{…}¥Calibration Beeps

Calibration Procedure

Calibration can be invoked by calling the calibration program, TBcalib. This program can be

invoked to calibrate the main video calibration, calibrate toolbars and retrieve stored

calibration data from EEPROM and set driver settings. For more information see the

separate Calibration documentation.

9/12

Toolbars

A toolbar is an area on the touch screen that acts independently from the main calibrated

video area. A toolbar can simply be used to mask off areas of the calibrated video area or

they can be used to trigger an event. Toolbar utilisation is described in the Toolbar

document.

Driver settings

The supplied registry settings will usually be set to the default settings for the controller in

use. In Win CE these settings are set manually in the tbupddce.reg file prior to generating

the CE build. We trust the entries in the .reg structure are self-explanatory and are found in

the registry branch HKEY_LOCAL_MACHINE ¥Drivers¥BuiltIn¥TBUPDD¥Parameters¥{…}¥1

 Given that all settings for an embedded system are defined in the CE Platform Builder and

the image then embedded on the target image it has been decided that there is no need for

a UPDD CE GUI as the same Windows GUI (UPDD Console) can be used to define the

required settings under Windows which are then placed in the UPDD CE configuration file.

In most cases the supplied configuration files will contain the required UPDD

settings. Values can be manually edited in the tbupddce.reg file or changed on a Windows

system using the UPDD Console.

 If values are changed on a Windows system, export the UPDD registry entry (e.g. by using

regedit's export option) and embed these setting in the tbupddce.reg file.

 Export the complete hive

 HKEY_LOCAL_MACHINE¥SYSTEM¥CurrentControlSet¥Services¥TBUPDD

 and take the contents of the exported file and replace all occurrences of

 [HKEY_LOCAL_MACHINE¥SYSTEM¥CurrentControlSet¥Services¥

 with

10/12

 [HKEY_LOCAL_MACHINE¥Drivers¥BuiltIn¥

 If only updating individual branches, e.g.
HKEY_LOCAL_MACHINE¥SYSTEM¥CurrentControlSet¥Services¥TBUPDD¥Parameters¥{guid}¥N¥Toolb

ars, take care to check that the guid value in the edited item matches that in the earlier

entries in tbupddce.reg (it may differ from the exported value).

Sound

The sound setting requests that a sound be generated ‘on contact’ that is when Pen down is

generated. Given that Windows CE does not support access to the system speaker in

UPDD version 4 we play the Windows "beep" when the sound should be made. With this

technique there is no control over the length or pitch of the sound.

 HKLM¥Drivers¥BuiltIn¥TBUPDD¥Parameters¥{…}¥1¥Sound

HKLM¥Drivers¥BuiltIn¥TBUPDD¥Parameters¥{…}¥1¥Sound Duration – not used

HKLM¥Drivers¥BuiltIn¥TBUPDD¥Parameters¥{…}¥1¥Sound Pitch – not used

Mouse Emulation

The mouse emulation modes dictate the manner in which the touch screen emulates pointer

movement and mouse click sequences and are defined across a number of settings:

 event alt mode n = Secondary Click Mode name (e.g.TouchDown Right)

event bind n = Bind name (e.g DFLT)

event mode n =Primary Click Mode name (e.g. TouchDown Left)

event name n = Event Name (e.g. Default)

 where n is the touch event number.

11/12

 Please refer to the Mouse Emulation documentation for further details.

Port interface issues – important

 Serial

Touch-screens may be connected to a CE device via a standard serial (COM). A CE image

builder should bear in mind that the default CE image generated by platform builder might

well make assumptions regarding the usage of such ports. E.g. debug output will be sent to

the first physical COM port, preventing its use. By default, CE creates two com port

instances, Com 0 and Com 1. Com 0 is used as the debug port and relates to the physical

port com 1. Com 1 is therefore the first port that can be used by the touch screen that

actually relates to the physical Com 2 port.

Many customers have been unable to get their touch screens working with a default CE

build until they have plugged the touch screen into com2 or changed the BIOS so that serial

port is referenced as Com2, although the references in the CE build refer to com 1 !!!!

 In some circumstances the CE builder will need to amend the CE configuration to alter the

default serial port behavior. If you are not familiar with this procedure we have technical

bulletin that covers this subject.

USB

The CE image must be amended to support the USB host controller (this is the system’s

USB host controller and NOT the USB touch controller). Consult the manufacturer’s

documentation and or Platform Builder help for details of how to achieve this with the

particular model of hardware in use. A 3rd party driver might be required for the host

controller, although this has not the case for the hardware we have tested so far. To ensure

the CE system’s USB host controller is functioning use a HID mouse prior to testing the USB

touch controller.

12/12

 PS/2

Windows CE version 5 implements a new composite PS/2 keyboard and mouse driver. In its

attempt to initialise the PS/2 mouse some PS/2 touch controllers can be initialised

incorrectly. This can be solved by executing ‘tbcalib /reinit’ during Windows startup.

 We have seen systems where it is not possible to use a PS/2 keyboard when using a PS/2

touchscreen using the alternative PS/2 port. At the end of calibration the PS/2 keyboard is

no longer functioning. We have not investigated this further at this time.

Software requirements

In order to build a Win CE binary image the appropriate MS Platform Builder relating to the

CE environment is required. E.g. MS Platform Builder 3.0 for Win CE 3.0 builds or Window

CE.NET Platform for Windows CE.NET etc.

Hardware requirements

A target Win CE device is required.

Alternatively x86 based images can be run on a standard PC using the LOADCEPC utility.

 Important note. If you wish to use a Serial connection to the Windows CE device, please

note that there is a consideration that is not always made clear in the Microsoft

documentation. A null modem cable is required, but this differs from a standard null modem

cable in that the RI pin is connected straight through. Without this connection it will be

impossible to make a serial connection from the NT host to the Win CE device

Revision 1.15, 5th Apr 2008

©2008 Touch-Base/DMC Co., Ltd

